Loading…

100-Km Long-Reach Carrierless 5G MMWoF Link With Destructive-Interference-Beating or Single-Sideband-Filtering OFDM

Based on the use of a dual-wavelength controlled quasi-color-free laser diode (QCFLD) transmitter with either destructively interfered beating or single-sideband filtering after receiving at a remote node, the 100-km long-reach (LR) carrierless millimeter-wave over fiber (MMWoF) link with directly-e...

Full description

Saved in:
Bibliographic Details
Published in:Journal of lightwave technology 2021-12, Vol.39 (24), p.7831-7841
Main Authors: Weng, Zu-Kai, Chi, Yu-Chieh, Wang, Huai-Yung, Tsai, Cheng-Ting, Cheng, Chih-Hsien, Lin, Gong-Ru
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-be43be983e9c1199c39436eb1e286b1661e4992b300a336daf2c2aa89e2ec0ac3
cites cdi_FETCH-LOGICAL-c291t-be43be983e9c1199c39436eb1e286b1661e4992b300a336daf2c2aa89e2ec0ac3
container_end_page 7841
container_issue 24
container_start_page 7831
container_title Journal of lightwave technology
container_volume 39
creator Weng, Zu-Kai
Chi, Yu-Chieh
Wang, Huai-Yung
Tsai, Cheng-Ting
Cheng, Chih-Hsien
Lin, Gong-Ru
description Based on the use of a dual-wavelength controlled quasi-color-free laser diode (QCFLD) transmitter with either destructively interfered beating or single-sideband filtering after receiving at a remote node, the 100-km long-reach (LR) carrierless millimeter-wave over fiber (MMWoF) link with directly-encoded orthogonal frequency-division multiplexing (OFDM) at 10-15 Gbit/s in optical wired and MMW wireless domains is experimentally demonstrated. The optically heterodyned MMW OFDM data by the destructively interfered beating obtains more gain from the RF amplifier than that without carrierless operation, as the MMW carrier with reduced power no longer dominates the gain competition. The destructively-interfered-beating 16-QAM OFDM data can transmit over 100-km SMF and 10-m free-space. The modulation bandwidth can be enhanced from 2 GHz to 2.5 GHz with a raw data rate of 10 Gbit/s after the OFDM subcarrier sidelobe filtering process. The sidelobe filtering suppresses the impact of the QCFLD chirp on the signal-to-noise of the optically heterodyned beating MMW carrierless OFDM data when reducing the sidelobes of each OFDM subcarrier. Besides, the single-sideband-filtered OFDM data can also obtain a higher gain than the double-sideband one due to the relief of RF amplifier saturation. Even though the noise located at the conjugated data band involves in the frequency-down-converted data after MMW down-mixing, the single-sideband-filtered OFDM data still allows the transmission of 8-QAM single-sideband OFDM data with 2 GHz over 100-km in SMF and 10-m in free-space at a raw data rate of 6 Gbit/s in one single-sideband and 12 Gbit/s at both sidebands. In comparison, the destructively-interfered-beating scheme offers large bandwidth and high spectral usage efficiency of 4 bit/s/Hz, whereas the single-sideband-filtering scheme effectively broadens the available bandwidth by saving another spectral sideband for allocating other carriers and data, which facilitate advantages including doubled band usage and half modulation power consumption. Both schemes offer comparable performance for future long-reach carrierless MMWoF applications.
doi_str_mv 10.1109/JLT.2021.3072106
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2608554525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9399768</ieee_id><sourcerecordid>2608554525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-be43be983e9c1199c39436eb1e286b1661e4992b300a336daf2c2aa89e2ec0ac3</originalsourceid><addsrcrecordid>eNo9kM9PwjAUxxujiYjeTbw08Vzsj61rj4oO0RESwXBcuvIGxbFhO0z87x2BePoe3uf73ssHoVtGB4xR_fCWzQeccjYQNOGMyjPUY3GsCOdMnKMeTYQgKuHRJboKYUMpiyKV9FBglJL3Lc6aekU-wNg1HhrvHfgKQsDxCE8miybFmau_8MK1a_wMofV727ofIOO6BV-Ch9oCeQLTunqFG49nXVZAZm4JhamXJHVVBx6G0_R5co0uSlMFuDllH32mL_PhK8mmo_HwMSOWa9aSAiJRgFYCtGVMayt0JCQUDLiSBZOSQaQ1LwSlRgi5NCW33BilgYOlxoo-uj_u3fnme9-9nW-ava-7kzmXVMVxFPO4o-iRsr4JwUOZ77zbGv-bM5of1Oad2vygNj-p7Sp3x4oDgH9cC60TqcQfMG5zZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608554525</pqid></control><display><type>article</type><title>100-Km Long-Reach Carrierless 5G MMWoF Link With Destructive-Interference-Beating or Single-Sideband-Filtering OFDM</title><source>IEEE Xplore (Online service)</source><creator>Weng, Zu-Kai ; Chi, Yu-Chieh ; Wang, Huai-Yung ; Tsai, Cheng-Ting ; Cheng, Chih-Hsien ; Lin, Gong-Ru</creator><creatorcontrib>Weng, Zu-Kai ; Chi, Yu-Chieh ; Wang, Huai-Yung ; Tsai, Cheng-Ting ; Cheng, Chih-Hsien ; Lin, Gong-Ru</creatorcontrib><description>Based on the use of a dual-wavelength controlled quasi-color-free laser diode (QCFLD) transmitter with either destructively interfered beating or single-sideband filtering after receiving at a remote node, the 100-km long-reach (LR) carrierless millimeter-wave over fiber (MMWoF) link with directly-encoded orthogonal frequency-division multiplexing (OFDM) at 10-15 Gbit/s in optical wired and MMW wireless domains is experimentally demonstrated. The optically heterodyned MMW OFDM data by the destructively interfered beating obtains more gain from the RF amplifier than that without carrierless operation, as the MMW carrier with reduced power no longer dominates the gain competition. The destructively-interfered-beating 16-QAM OFDM data can transmit over 100-km SMF and 10-m free-space. The modulation bandwidth can be enhanced from 2 GHz to 2.5 GHz with a raw data rate of 10 Gbit/s after the OFDM subcarrier sidelobe filtering process. The sidelobe filtering suppresses the impact of the QCFLD chirp on the signal-to-noise of the optically heterodyned beating MMW carrierless OFDM data when reducing the sidelobes of each OFDM subcarrier. Besides, the single-sideband-filtered OFDM data can also obtain a higher gain than the double-sideband one due to the relief of RF amplifier saturation. Even though the noise located at the conjugated data band involves in the frequency-down-converted data after MMW down-mixing, the single-sideband-filtered OFDM data still allows the transmission of 8-QAM single-sideband OFDM data with 2 GHz over 100-km in SMF and 10-m in free-space at a raw data rate of 6 Gbit/s in one single-sideband and 12 Gbit/s at both sidebands. In comparison, the destructively-interfered-beating scheme offers large bandwidth and high spectral usage efficiency of 4 bit/s/Hz, whereas the single-sideband-filtering scheme effectively broadens the available bandwidth by saving another spectral sideband for allocating other carriers and data, which facilitate advantages including doubled band usage and half modulation power consumption. Both schemes offer comparable performance for future long-reach carrierless MMWoF applications.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2021.3072106</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Amplification ; Amplifiers ; Bandwidths ; carrierless ; Diode lasers ; Filtration ; High-speed optical techniques ; long-reach passive optical network (LR-PON) ; Millimeter wave communication ; Millimeter waves ; millimeter-wave ; Millimeter-wave over fiber (MMWoF) ; Modulation ; OFDM ; Optical amplifiers ; Optical fibers ; Optical filters ; Optical mixing ; Orthogonal Frequency Division Multiplexing ; Passive optical networks ; Power consumption ; QAM-OFDM ; Quasi-color-free laser diode (QCFLD) ; Semiconductor lasers ; Sidebands ; Sidelobe reduction ; Sidelobes ; Single sideband transmission ; single-sideband ; Stimulated emission ; Subcarriers</subject><ispartof>Journal of lightwave technology, 2021-12, Vol.39 (24), p.7831-7841</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-be43be983e9c1199c39436eb1e286b1661e4992b300a336daf2c2aa89e2ec0ac3</citedby><cites>FETCH-LOGICAL-c291t-be43be983e9c1199c39436eb1e286b1661e4992b300a336daf2c2aa89e2ec0ac3</cites><orcidid>0000-0003-1658-0532 ; 0000-0001-6482-869X ; 0000-0003-2061-1282</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9399768$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Weng, Zu-Kai</creatorcontrib><creatorcontrib>Chi, Yu-Chieh</creatorcontrib><creatorcontrib>Wang, Huai-Yung</creatorcontrib><creatorcontrib>Tsai, Cheng-Ting</creatorcontrib><creatorcontrib>Cheng, Chih-Hsien</creatorcontrib><creatorcontrib>Lin, Gong-Ru</creatorcontrib><title>100-Km Long-Reach Carrierless 5G MMWoF Link With Destructive-Interference-Beating or Single-Sideband-Filtering OFDM</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Based on the use of a dual-wavelength controlled quasi-color-free laser diode (QCFLD) transmitter with either destructively interfered beating or single-sideband filtering after receiving at a remote node, the 100-km long-reach (LR) carrierless millimeter-wave over fiber (MMWoF) link with directly-encoded orthogonal frequency-division multiplexing (OFDM) at 10-15 Gbit/s in optical wired and MMW wireless domains is experimentally demonstrated. The optically heterodyned MMW OFDM data by the destructively interfered beating obtains more gain from the RF amplifier than that without carrierless operation, as the MMW carrier with reduced power no longer dominates the gain competition. The destructively-interfered-beating 16-QAM OFDM data can transmit over 100-km SMF and 10-m free-space. The modulation bandwidth can be enhanced from 2 GHz to 2.5 GHz with a raw data rate of 10 Gbit/s after the OFDM subcarrier sidelobe filtering process. The sidelobe filtering suppresses the impact of the QCFLD chirp on the signal-to-noise of the optically heterodyned beating MMW carrierless OFDM data when reducing the sidelobes of each OFDM subcarrier. Besides, the single-sideband-filtered OFDM data can also obtain a higher gain than the double-sideband one due to the relief of RF amplifier saturation. Even though the noise located at the conjugated data band involves in the frequency-down-converted data after MMW down-mixing, the single-sideband-filtered OFDM data still allows the transmission of 8-QAM single-sideband OFDM data with 2 GHz over 100-km in SMF and 10-m in free-space at a raw data rate of 6 Gbit/s in one single-sideband and 12 Gbit/s at both sidebands. In comparison, the destructively-interfered-beating scheme offers large bandwidth and high spectral usage efficiency of 4 bit/s/Hz, whereas the single-sideband-filtering scheme effectively broadens the available bandwidth by saving another spectral sideband for allocating other carriers and data, which facilitate advantages including doubled band usage and half modulation power consumption. Both schemes offer comparable performance for future long-reach carrierless MMWoF applications.</description><subject>Amplification</subject><subject>Amplifiers</subject><subject>Bandwidths</subject><subject>carrierless</subject><subject>Diode lasers</subject><subject>Filtration</subject><subject>High-speed optical techniques</subject><subject>long-reach passive optical network (LR-PON)</subject><subject>Millimeter wave communication</subject><subject>Millimeter waves</subject><subject>millimeter-wave</subject><subject>Millimeter-wave over fiber (MMWoF)</subject><subject>Modulation</subject><subject>OFDM</subject><subject>Optical amplifiers</subject><subject>Optical fibers</subject><subject>Optical filters</subject><subject>Optical mixing</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Passive optical networks</subject><subject>Power consumption</subject><subject>QAM-OFDM</subject><subject>Quasi-color-free laser diode (QCFLD)</subject><subject>Semiconductor lasers</subject><subject>Sidebands</subject><subject>Sidelobe reduction</subject><subject>Sidelobes</subject><subject>Single sideband transmission</subject><subject>single-sideband</subject><subject>Stimulated emission</subject><subject>Subcarriers</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM9PwjAUxxujiYjeTbw08Vzsj61rj4oO0RESwXBcuvIGxbFhO0z87x2BePoe3uf73ssHoVtGB4xR_fCWzQeccjYQNOGMyjPUY3GsCOdMnKMeTYQgKuHRJboKYUMpiyKV9FBglJL3Lc6aekU-wNg1HhrvHfgKQsDxCE8miybFmau_8MK1a_wMofV727ofIOO6BV-Ch9oCeQLTunqFG49nXVZAZm4JhamXJHVVBx6G0_R5co0uSlMFuDllH32mL_PhK8mmo_HwMSOWa9aSAiJRgFYCtGVMayt0JCQUDLiSBZOSQaQ1LwSlRgi5NCW33BilgYOlxoo-uj_u3fnme9-9nW-ava-7kzmXVMVxFPO4o-iRsr4JwUOZ77zbGv-bM5of1Oad2vygNj-p7Sp3x4oDgH9cC60TqcQfMG5zZg</recordid><startdate>20211215</startdate><enddate>20211215</enddate><creator>Weng, Zu-Kai</creator><creator>Chi, Yu-Chieh</creator><creator>Wang, Huai-Yung</creator><creator>Tsai, Cheng-Ting</creator><creator>Cheng, Chih-Hsien</creator><creator>Lin, Gong-Ru</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1658-0532</orcidid><orcidid>https://orcid.org/0000-0001-6482-869X</orcidid><orcidid>https://orcid.org/0000-0003-2061-1282</orcidid></search><sort><creationdate>20211215</creationdate><title>100-Km Long-Reach Carrierless 5G MMWoF Link With Destructive-Interference-Beating or Single-Sideband-Filtering OFDM</title><author>Weng, Zu-Kai ; Chi, Yu-Chieh ; Wang, Huai-Yung ; Tsai, Cheng-Ting ; Cheng, Chih-Hsien ; Lin, Gong-Ru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-be43be983e9c1199c39436eb1e286b1661e4992b300a336daf2c2aa89e2ec0ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amplification</topic><topic>Amplifiers</topic><topic>Bandwidths</topic><topic>carrierless</topic><topic>Diode lasers</topic><topic>Filtration</topic><topic>High-speed optical techniques</topic><topic>long-reach passive optical network (LR-PON)</topic><topic>Millimeter wave communication</topic><topic>Millimeter waves</topic><topic>millimeter-wave</topic><topic>Millimeter-wave over fiber (MMWoF)</topic><topic>Modulation</topic><topic>OFDM</topic><topic>Optical amplifiers</topic><topic>Optical fibers</topic><topic>Optical filters</topic><topic>Optical mixing</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Passive optical networks</topic><topic>Power consumption</topic><topic>QAM-OFDM</topic><topic>Quasi-color-free laser diode (QCFLD)</topic><topic>Semiconductor lasers</topic><topic>Sidebands</topic><topic>Sidelobe reduction</topic><topic>Sidelobes</topic><topic>Single sideband transmission</topic><topic>single-sideband</topic><topic>Stimulated emission</topic><topic>Subcarriers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weng, Zu-Kai</creatorcontrib><creatorcontrib>Chi, Yu-Chieh</creatorcontrib><creatorcontrib>Wang, Huai-Yung</creatorcontrib><creatorcontrib>Tsai, Cheng-Ting</creatorcontrib><creatorcontrib>Cheng, Chih-Hsien</creatorcontrib><creatorcontrib>Lin, Gong-Ru</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weng, Zu-Kai</au><au>Chi, Yu-Chieh</au><au>Wang, Huai-Yung</au><au>Tsai, Cheng-Ting</au><au>Cheng, Chih-Hsien</au><au>Lin, Gong-Ru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>100-Km Long-Reach Carrierless 5G MMWoF Link With Destructive-Interference-Beating or Single-Sideband-Filtering OFDM</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2021-12-15</date><risdate>2021</risdate><volume>39</volume><issue>24</issue><spage>7831</spage><epage>7841</epage><pages>7831-7841</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Based on the use of a dual-wavelength controlled quasi-color-free laser diode (QCFLD) transmitter with either destructively interfered beating or single-sideband filtering after receiving at a remote node, the 100-km long-reach (LR) carrierless millimeter-wave over fiber (MMWoF) link with directly-encoded orthogonal frequency-division multiplexing (OFDM) at 10-15 Gbit/s in optical wired and MMW wireless domains is experimentally demonstrated. The optically heterodyned MMW OFDM data by the destructively interfered beating obtains more gain from the RF amplifier than that without carrierless operation, as the MMW carrier with reduced power no longer dominates the gain competition. The destructively-interfered-beating 16-QAM OFDM data can transmit over 100-km SMF and 10-m free-space. The modulation bandwidth can be enhanced from 2 GHz to 2.5 GHz with a raw data rate of 10 Gbit/s after the OFDM subcarrier sidelobe filtering process. The sidelobe filtering suppresses the impact of the QCFLD chirp on the signal-to-noise of the optically heterodyned beating MMW carrierless OFDM data when reducing the sidelobes of each OFDM subcarrier. Besides, the single-sideband-filtered OFDM data can also obtain a higher gain than the double-sideband one due to the relief of RF amplifier saturation. Even though the noise located at the conjugated data band involves in the frequency-down-converted data after MMW down-mixing, the single-sideband-filtered OFDM data still allows the transmission of 8-QAM single-sideband OFDM data with 2 GHz over 100-km in SMF and 10-m in free-space at a raw data rate of 6 Gbit/s in one single-sideband and 12 Gbit/s at both sidebands. In comparison, the destructively-interfered-beating scheme offers large bandwidth and high spectral usage efficiency of 4 bit/s/Hz, whereas the single-sideband-filtering scheme effectively broadens the available bandwidth by saving another spectral sideband for allocating other carriers and data, which facilitate advantages including doubled band usage and half modulation power consumption. Both schemes offer comparable performance for future long-reach carrierless MMWoF applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2021.3072106</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1658-0532</orcidid><orcidid>https://orcid.org/0000-0001-6482-869X</orcidid><orcidid>https://orcid.org/0000-0003-2061-1282</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2021-12, Vol.39 (24), p.7831-7841
issn 0733-8724
1558-2213
language eng
recordid cdi_proquest_journals_2608554525
source IEEE Xplore (Online service)
subjects Amplification
Amplifiers
Bandwidths
carrierless
Diode lasers
Filtration
High-speed optical techniques
long-reach passive optical network (LR-PON)
Millimeter wave communication
Millimeter waves
millimeter-wave
Millimeter-wave over fiber (MMWoF)
Modulation
OFDM
Optical amplifiers
Optical fibers
Optical filters
Optical mixing
Orthogonal Frequency Division Multiplexing
Passive optical networks
Power consumption
QAM-OFDM
Quasi-color-free laser diode (QCFLD)
Semiconductor lasers
Sidebands
Sidelobe reduction
Sidelobes
Single sideband transmission
single-sideband
Stimulated emission
Subcarriers
title 100-Km Long-Reach Carrierless 5G MMWoF Link With Destructive-Interference-Beating or Single-Sideband-Filtering OFDM
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A10%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=100-Km%20Long-Reach%20Carrierless%205G%20MMWoF%20Link%20With%20Destructive-Interference-Beating%20or%20Single-Sideband-Filtering%20OFDM&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Weng,%20Zu-Kai&rft.date=2021-12-15&rft.volume=39&rft.issue=24&rft.spage=7831&rft.epage=7841&rft.pages=7831-7841&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2021.3072106&rft_dat=%3Cproquest_ieee_%3E2608554525%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-be43be983e9c1199c39436eb1e286b1661e4992b300a336daf2c2aa89e2ec0ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2608554525&rft_id=info:pmid/&rft_ieee_id=9399768&rfr_iscdi=true