Loading…

Model-induced Generalization Error Bound for Information-theoretic Representation Learning in Source-data-free Unsupervised Domain Adaptation

Many unsupervised domain adaptation (UDA) methods have been developed and have achieved promising results in various pattern recognition tasks. However, most existing methods assume that raw source data are available in the target domain when transferring knowledge from the source to the target doma...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on image processing 2022-01, Vol.31, p.1-1
Main Authors: Yang, Baoyao, Yeh, Hao-Wei, Harada, Tatsuya, Yuen, Pong C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c390t-5f1f9bccb09c07d85786cfbbff81233e69dbad48ff09b967a6b105361ab4059b3
cites cdi_FETCH-LOGICAL-c390t-5f1f9bccb09c07d85786cfbbff81233e69dbad48ff09b967a6b105361ab4059b3
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on image processing
container_volume 31
creator Yang, Baoyao
Yeh, Hao-Wei
Harada, Tatsuya
Yuen, Pong C.
description Many unsupervised domain adaptation (UDA) methods have been developed and have achieved promising results in various pattern recognition tasks. However, most existing methods assume that raw source data are available in the target domain when transferring knowledge from the source to the target domain. Due to the emerging regulations on data privacy, the availability of source data cannot be guaranteed when applying UDA methods in a new domain. The lack of source data makes UDA more challenging, and most existing methods are no longer applicable. To handle this issue, this paper analyzes the cross-domain representations in source-data-free unsupervised domain adaptation (SF-UDA). A new theorem is derived to bound the target-domain prediction error using the trained source model instead of the source data. On the basis of the proposed theorem, information bottleneck theory is introduced to minimize the generalization upper bound of the target-domain prediction error, thereby achieving domain adaptation. The minimization is implemented in a variational inference framework using a newly developed latent alignment variational autoencoder (LA-VAE). The experimental results show good performance of the proposed method in several cross-dataset classification tasks without using source data. Ablation studies and feature visualization also validate the effectiveness of our method in SF-UDA.
doi_str_mv 10.1109/TIP.2021.3130530
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2608554655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9640468</ieee_id><sourcerecordid>2608131286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-5f1f9bccb09c07d85786cfbbff81233e69dbad48ff09b967a6b105361ab4059b3</originalsourceid><addsrcrecordid>eNpdkctu1TAQhiMEEqWwR2ITiQ0bH8bxJfGytKUc6SAQtOvIlzG4yrGDnSDBO_DOuE3Fgs3MSPP9c9HfNC8p7CgF9fZ6_3nXQUd3jDIQDB41J1RxSgB497jWIHrSU66eNs9KuQWgXFB50vz5mBxOJES3WnTtFUbMegq_9RJSbC9zTrl9l9boWl-rfazxeN8jy3dMGZdg2y84ZywYl010QJ1jiN_aENuvac0WidOLJj4jtjexrDPmn6HUbRfpqCt05vS8aZ83T7yeCr54yKfNzfvL6_MP5PDpan9-diCWKViI8NQrY60BZaF3g-gHab0x3g-0YwylckY7PngPyijZa2nq_0xSbTgIZdhp82abO-f0Y8WyjMdQLE6TjpjWMnYSBspoN8iKvv4Pva0_xXrdPSUEl0JUCjbK5lRKRj_OORx1_jVSGO_8Gas_450_44M_VfJqkwRE_IcryYHLgf0Ff4aOsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608554655</pqid></control><display><type>article</type><title>Model-induced Generalization Error Bound for Information-theoretic Representation Learning in Source-data-free Unsupervised Domain Adaptation</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Yang, Baoyao ; Yeh, Hao-Wei ; Harada, Tatsuya ; Yuen, Pong C.</creator><creatorcontrib>Yang, Baoyao ; Yeh, Hao-Wei ; Harada, Tatsuya ; Yuen, Pong C.</creatorcontrib><description>Many unsupervised domain adaptation (UDA) methods have been developed and have achieved promising results in various pattern recognition tasks. However, most existing methods assume that raw source data are available in the target domain when transferring knowledge from the source to the target domain. Due to the emerging regulations on data privacy, the availability of source data cannot be guaranteed when applying UDA methods in a new domain. The lack of source data makes UDA more challenging, and most existing methods are no longer applicable. To handle this issue, this paper analyzes the cross-domain representations in source-data-free unsupervised domain adaptation (SF-UDA). A new theorem is derived to bound the target-domain prediction error using the trained source model instead of the source data. On the basis of the proposed theorem, information bottleneck theory is introduced to minimize the generalization upper bound of the target-domain prediction error, thereby achieving domain adaptation. The minimization is implemented in a variational inference framework using a newly developed latent alignment variational autoencoder (LA-VAE). The experimental results show good performance of the proposed method in several cross-dataset classification tasks without using source data. Ablation studies and feature visualization also validate the effectiveness of our method in SF-UDA.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2021.3130530</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ablation ; Adaptation ; Adaptation models ; Computational modeling ; Data models ; Data privacy ; Domains ; Errors ; Information theory ; Optimization ; Pattern recognition ; Predictive models ; Representations ; Theorems ; Upper bound ; Upper bounds</subject><ispartof>IEEE transactions on image processing, 2022-01, Vol.31, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-5f1f9bccb09c07d85786cfbbff81233e69dbad48ff09b967a6b105361ab4059b3</citedby><cites>FETCH-LOGICAL-c390t-5f1f9bccb09c07d85786cfbbff81233e69dbad48ff09b967a6b105361ab4059b3</cites><orcidid>0000-0001-9092-3164 ; 0000-0002-6425-0725 ; 0000-0002-9343-2202 ; 0000-0002-3712-3691</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9640468$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Yang, Baoyao</creatorcontrib><creatorcontrib>Yeh, Hao-Wei</creatorcontrib><creatorcontrib>Harada, Tatsuya</creatorcontrib><creatorcontrib>Yuen, Pong C.</creatorcontrib><title>Model-induced Generalization Error Bound for Information-theoretic Representation Learning in Source-data-free Unsupervised Domain Adaptation</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><description>Many unsupervised domain adaptation (UDA) methods have been developed and have achieved promising results in various pattern recognition tasks. However, most existing methods assume that raw source data are available in the target domain when transferring knowledge from the source to the target domain. Due to the emerging regulations on data privacy, the availability of source data cannot be guaranteed when applying UDA methods in a new domain. The lack of source data makes UDA more challenging, and most existing methods are no longer applicable. To handle this issue, this paper analyzes the cross-domain representations in source-data-free unsupervised domain adaptation (SF-UDA). A new theorem is derived to bound the target-domain prediction error using the trained source model instead of the source data. On the basis of the proposed theorem, information bottleneck theory is introduced to minimize the generalization upper bound of the target-domain prediction error, thereby achieving domain adaptation. The minimization is implemented in a variational inference framework using a newly developed latent alignment variational autoencoder (LA-VAE). The experimental results show good performance of the proposed method in several cross-dataset classification tasks without using source data. Ablation studies and feature visualization also validate the effectiveness of our method in SF-UDA.</description><subject>Ablation</subject><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Data privacy</subject><subject>Domains</subject><subject>Errors</subject><subject>Information theory</subject><subject>Optimization</subject><subject>Pattern recognition</subject><subject>Predictive models</subject><subject>Representations</subject><subject>Theorems</subject><subject>Upper bound</subject><subject>Upper bounds</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkctu1TAQhiMEEqWwR2ITiQ0bH8bxJfGytKUc6SAQtOvIlzG4yrGDnSDBO_DOuE3Fgs3MSPP9c9HfNC8p7CgF9fZ6_3nXQUd3jDIQDB41J1RxSgB497jWIHrSU66eNs9KuQWgXFB50vz5mBxOJES3WnTtFUbMegq_9RJSbC9zTrl9l9boWl-rfazxeN8jy3dMGZdg2y84ZywYl010QJ1jiN_aENuvac0WidOLJj4jtjexrDPmn6HUbRfpqCt05vS8aZ83T7yeCr54yKfNzfvL6_MP5PDpan9-diCWKViI8NQrY60BZaF3g-gHab0x3g-0YwylckY7PngPyijZa2nq_0xSbTgIZdhp82abO-f0Y8WyjMdQLE6TjpjWMnYSBspoN8iKvv4Pva0_xXrdPSUEl0JUCjbK5lRKRj_OORx1_jVSGO_8Gas_450_44M_VfJqkwRE_IcryYHLgf0Ff4aOsg</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Yang, Baoyao</creator><creator>Yeh, Hao-Wei</creator><creator>Harada, Tatsuya</creator><creator>Yuen, Pong C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9092-3164</orcidid><orcidid>https://orcid.org/0000-0002-6425-0725</orcidid><orcidid>https://orcid.org/0000-0002-9343-2202</orcidid><orcidid>https://orcid.org/0000-0002-3712-3691</orcidid></search><sort><creationdate>20220101</creationdate><title>Model-induced Generalization Error Bound for Information-theoretic Representation Learning in Source-data-free Unsupervised Domain Adaptation</title><author>Yang, Baoyao ; Yeh, Hao-Wei ; Harada, Tatsuya ; Yuen, Pong C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-5f1f9bccb09c07d85786cfbbff81233e69dbad48ff09b967a6b105361ab4059b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ablation</topic><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Data privacy</topic><topic>Domains</topic><topic>Errors</topic><topic>Information theory</topic><topic>Optimization</topic><topic>Pattern recognition</topic><topic>Predictive models</topic><topic>Representations</topic><topic>Theorems</topic><topic>Upper bound</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Baoyao</creatorcontrib><creatorcontrib>Yeh, Hao-Wei</creatorcontrib><creatorcontrib>Harada, Tatsuya</creatorcontrib><creatorcontrib>Yuen, Pong C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Baoyao</au><au>Yeh, Hao-Wei</au><au>Harada, Tatsuya</au><au>Yuen, Pong C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Model-induced Generalization Error Bound for Information-theoretic Representation Learning in Source-data-free Unsupervised Domain Adaptation</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><date>2022-01-01</date><risdate>2022</risdate><volume>31</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Many unsupervised domain adaptation (UDA) methods have been developed and have achieved promising results in various pattern recognition tasks. However, most existing methods assume that raw source data are available in the target domain when transferring knowledge from the source to the target domain. Due to the emerging regulations on data privacy, the availability of source data cannot be guaranteed when applying UDA methods in a new domain. The lack of source data makes UDA more challenging, and most existing methods are no longer applicable. To handle this issue, this paper analyzes the cross-domain representations in source-data-free unsupervised domain adaptation (SF-UDA). A new theorem is derived to bound the target-domain prediction error using the trained source model instead of the source data. On the basis of the proposed theorem, information bottleneck theory is introduced to minimize the generalization upper bound of the target-domain prediction error, thereby achieving domain adaptation. The minimization is implemented in a variational inference framework using a newly developed latent alignment variational autoencoder (LA-VAE). The experimental results show good performance of the proposed method in several cross-dataset classification tasks without using source data. Ablation studies and feature visualization also validate the effectiveness of our method in SF-UDA.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIP.2021.3130530</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9092-3164</orcidid><orcidid>https://orcid.org/0000-0002-6425-0725</orcidid><orcidid>https://orcid.org/0000-0002-9343-2202</orcidid><orcidid>https://orcid.org/0000-0002-3712-3691</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2022-01, Vol.31, p.1-1
issn 1057-7149
1941-0042
language eng
recordid cdi_proquest_journals_2608554655
source IEEE Electronic Library (IEL) Journals
subjects Ablation
Adaptation
Adaptation models
Computational modeling
Data models
Data privacy
Domains
Errors
Information theory
Optimization
Pattern recognition
Predictive models
Representations
Theorems
Upper bound
Upper bounds
title Model-induced Generalization Error Bound for Information-theoretic Representation Learning in Source-data-free Unsupervised Domain Adaptation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A21%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Model-induced%20Generalization%20Error%20Bound%20for%20Information-theoretic%20Representation%20Learning%20in%20Source-data-free%20Unsupervised%20Domain%20Adaptation&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Yang,%20Baoyao&rft.date=2022-01-01&rft.volume=31&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2021.3130530&rft_dat=%3Cproquest_cross%3E2608131286%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-5f1f9bccb09c07d85786cfbbff81233e69dbad48ff09b967a6b105361ab4059b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2608554655&rft_id=info:pmid/&rft_ieee_id=9640468&rfr_iscdi=true