Loading…

Optical Satellite Eavesdropping

In recent years, satellite communication (SatCom) systems have been widely used for navigation, broadcasting application, disaster recovery, weather sensing, and even spying on the Earth. As the number of satellites is highly increasing and with the radical revolution in wireless technology, eavesdr...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-04
Main Authors: Olfa Ben Yahia, Erdogan, Eylem, Gunes Karabulut Kurt, Altunbas, Ibrahim, Yanikomeroglu, Halim
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent years, satellite communication (SatCom) systems have been widely used for navigation, broadcasting application, disaster recovery, weather sensing, and even spying on the Earth. As the number of satellites is highly increasing and with the radical revolution in wireless technology, eavesdropping on SatCom will be possible in next-generation networks. In this context, we introduce the satellite eavesdropping approach, where an eavesdropping spacecraft can intercept optical communications established between a low Earth orbit satellite and a high altitude platform station (HAPS). Specifically, we propose two practical eavesdropping scenarios for satellite-to-HAPS (downlink) and HAPS-to-satellite (uplink) optical communications, where the attacker spacecraft can eavesdrop on the transmitted signal or the received signal. To quantify the secrecy performance of the scenarios, the average secrecy capacity and secrecy outage probability expressions are derived and validated with Monte Carlo simulations. Moreover, secrecy throughput of the proposed models is investigated. We observe that turbulence-induced fading significantly impacts the secrecy performance of free-space optical communication.
ISSN:2331-8422