Loading…

Custom Orthogonal Weight functions (COWs) for Event Classification

A common problem in data analysis is the separation of signal and background. We revisit and generalise the so-called \(sWeights\) method, which allows one to calculate an empirical estimate of the signal density of a control variable using a fit of a mixed signal and background model to a discrimin...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-01
Main Authors: Dembinski, Hans, Kenzie, Matthew, Langenbruch, Christoph, Schmelling, Michael
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Dembinski, Hans
Kenzie, Matthew
Langenbruch, Christoph
Schmelling, Michael
description A common problem in data analysis is the separation of signal and background. We revisit and generalise the so-called \(sWeights\) method, which allows one to calculate an empirical estimate of the signal density of a control variable using a fit of a mixed signal and background model to a discriminating variable. We show that \(sWeights\) are a special case of a larger class of Custom Orthogonal Weight functions (COWs), which can be applied to a more general class of problems in which the discriminating and control variables are not necessarily independent and still achieve close to optimal performance. We also investigate the properties of parameters estimated from fits of statistical models to \(sWeights\) and provide closed formulas for the asymptotic covariance matrix of the fitted parameters. To illustrate our findings, we discuss several practical applications of these techniques.
doi_str_mv 10.48550/arxiv.2112.04574
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2608626866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608626866</sourcerecordid><originalsourceid>FETCH-LOGICAL-a954-4a4aab4c05e3a65d5d10c0a0ec66487345e1ad73b673af23d604d5c84fa4f12f3</originalsourceid><addsrcrecordid>eNotjkFLwzAYQIMgOOZ-gLeAFz20fkm-pPGoZU5h0Mtgx_EtTbaO2miTDn--ip7e5fF4jN0IKNFqDQ80fnXnUgohS0Bd4QWbSaVEYVHKK7ZI6QQA0lRSazVjz_WUcnznzZiP8RAH6vnWd4dj5mEaXO7ikPhd3WzTPQ9x5MuzHzKve0qpC52jX-GaXQbqk1_8c842L8tN_Vqsm9Vb_bQu6FFjgYREe3SgvSKjW90KcEDgnTFoK4XaC2ortTeVoiBVawBb7SwGwiBkUHN2-5f9GOPn5FPeneI0_gynnTRgjTTWGPUN5RZLQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608626866</pqid></control><display><type>article</type><title>Custom Orthogonal Weight functions (COWs) for Event Classification</title><source>Publicly Available Content (ProQuest)</source><creator>Dembinski, Hans ; Kenzie, Matthew ; Langenbruch, Christoph ; Schmelling, Michael</creator><creatorcontrib>Dembinski, Hans ; Kenzie, Matthew ; Langenbruch, Christoph ; Schmelling, Michael</creatorcontrib><description>A common problem in data analysis is the separation of signal and background. We revisit and generalise the so-called \(sWeights\) method, which allows one to calculate an empirical estimate of the signal density of a control variable using a fit of a mixed signal and background model to a discriminating variable. We show that \(sWeights\) are a special case of a larger class of Custom Orthogonal Weight functions (COWs), which can be applied to a more general class of problems in which the discriminating and control variables are not necessarily independent and still achieve close to optimal performance. We also investigate the properties of parameters estimated from fits of statistical models to \(sWeights\) and provide closed formulas for the asymptotic covariance matrix of the fitted parameters. To illustrate our findings, we discuss several practical applications of these techniques.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2112.04574</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Covariance matrix ; Data analysis ; Empirical analysis ; Independent variables ; Parameter estimation ; Statistical models ; Weighting functions</subject><ispartof>arXiv.org, 2022-01</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2608626866?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,27923,37010,44588</link.rule.ids></links><search><creatorcontrib>Dembinski, Hans</creatorcontrib><creatorcontrib>Kenzie, Matthew</creatorcontrib><creatorcontrib>Langenbruch, Christoph</creatorcontrib><creatorcontrib>Schmelling, Michael</creatorcontrib><title>Custom Orthogonal Weight functions (COWs) for Event Classification</title><title>arXiv.org</title><description>A common problem in data analysis is the separation of signal and background. We revisit and generalise the so-called \(sWeights\) method, which allows one to calculate an empirical estimate of the signal density of a control variable using a fit of a mixed signal and background model to a discriminating variable. We show that \(sWeights\) are a special case of a larger class of Custom Orthogonal Weight functions (COWs), which can be applied to a more general class of problems in which the discriminating and control variables are not necessarily independent and still achieve close to optimal performance. We also investigate the properties of parameters estimated from fits of statistical models to \(sWeights\) and provide closed formulas for the asymptotic covariance matrix of the fitted parameters. To illustrate our findings, we discuss several practical applications of these techniques.</description><subject>Covariance matrix</subject><subject>Data analysis</subject><subject>Empirical analysis</subject><subject>Independent variables</subject><subject>Parameter estimation</subject><subject>Statistical models</subject><subject>Weighting functions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjkFLwzAYQIMgOOZ-gLeAFz20fkm-pPGoZU5h0Mtgx_EtTbaO2miTDn--ip7e5fF4jN0IKNFqDQ80fnXnUgohS0Bd4QWbSaVEYVHKK7ZI6QQA0lRSazVjz_WUcnznzZiP8RAH6vnWd4dj5mEaXO7ikPhd3WzTPQ9x5MuzHzKve0qpC52jX-GaXQbqk1_8c842L8tN_Vqsm9Vb_bQu6FFjgYREe3SgvSKjW90KcEDgnTFoK4XaC2ortTeVoiBVawBb7SwGwiBkUHN2-5f9GOPn5FPeneI0_gynnTRgjTTWGPUN5RZLQA</recordid><startdate>20220126</startdate><enddate>20220126</enddate><creator>Dembinski, Hans</creator><creator>Kenzie, Matthew</creator><creator>Langenbruch, Christoph</creator><creator>Schmelling, Michael</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220126</creationdate><title>Custom Orthogonal Weight functions (COWs) for Event Classification</title><author>Dembinski, Hans ; Kenzie, Matthew ; Langenbruch, Christoph ; Schmelling, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a954-4a4aab4c05e3a65d5d10c0a0ec66487345e1ad73b673af23d604d5c84fa4f12f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Covariance matrix</topic><topic>Data analysis</topic><topic>Empirical analysis</topic><topic>Independent variables</topic><topic>Parameter estimation</topic><topic>Statistical models</topic><topic>Weighting functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Dembinski, Hans</creatorcontrib><creatorcontrib>Kenzie, Matthew</creatorcontrib><creatorcontrib>Langenbruch, Christoph</creatorcontrib><creatorcontrib>Schmelling, Michael</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dembinski, Hans</au><au>Kenzie, Matthew</au><au>Langenbruch, Christoph</au><au>Schmelling, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Custom Orthogonal Weight functions (COWs) for Event Classification</atitle><jtitle>arXiv.org</jtitle><date>2022-01-26</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>A common problem in data analysis is the separation of signal and background. We revisit and generalise the so-called \(sWeights\) method, which allows one to calculate an empirical estimate of the signal density of a control variable using a fit of a mixed signal and background model to a discriminating variable. We show that \(sWeights\) are a special case of a larger class of Custom Orthogonal Weight functions (COWs), which can be applied to a more general class of problems in which the discriminating and control variables are not necessarily independent and still achieve close to optimal performance. We also investigate the properties of parameters estimated from fits of statistical models to \(sWeights\) and provide closed formulas for the asymptotic covariance matrix of the fitted parameters. To illustrate our findings, we discuss several practical applications of these techniques.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2112.04574</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2608626866
source Publicly Available Content (ProQuest)
subjects Covariance matrix
Data analysis
Empirical analysis
Independent variables
Parameter estimation
Statistical models
Weighting functions
title Custom Orthogonal Weight functions (COWs) for Event Classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Custom%20Orthogonal%20Weight%20functions%20(COWs)%20for%20Event%20Classification&rft.jtitle=arXiv.org&rft.au=Dembinski,%20Hans&rft.date=2022-01-26&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2112.04574&rft_dat=%3Cproquest%3E2608626866%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a954-4a4aab4c05e3a65d5d10c0a0ec66487345e1ad73b673af23d604d5c84fa4f12f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2608626866&rft_id=info:pmid/&rfr_iscdi=true