Loading…
Custom Orthogonal Weight functions (COWs) for Event Classification
A common problem in data analysis is the separation of signal and background. We revisit and generalise the so-called \(sWeights\) method, which allows one to calculate an empirical estimate of the signal density of a control variable using a fit of a mixed signal and background model to a discrimin...
Saved in:
Published in: | arXiv.org 2022-01 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Dembinski, Hans Kenzie, Matthew Langenbruch, Christoph Schmelling, Michael |
description | A common problem in data analysis is the separation of signal and background. We revisit and generalise the so-called \(sWeights\) method, which allows one to calculate an empirical estimate of the signal density of a control variable using a fit of a mixed signal and background model to a discriminating variable. We show that \(sWeights\) are a special case of a larger class of Custom Orthogonal Weight functions (COWs), which can be applied to a more general class of problems in which the discriminating and control variables are not necessarily independent and still achieve close to optimal performance. We also investigate the properties of parameters estimated from fits of statistical models to \(sWeights\) and provide closed formulas for the asymptotic covariance matrix of the fitted parameters. To illustrate our findings, we discuss several practical applications of these techniques. |
doi_str_mv | 10.48550/arxiv.2112.04574 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2608626866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608626866</sourcerecordid><originalsourceid>FETCH-LOGICAL-a954-4a4aab4c05e3a65d5d10c0a0ec66487345e1ad73b673af23d604d5c84fa4f12f3</originalsourceid><addsrcrecordid>eNotjkFLwzAYQIMgOOZ-gLeAFz20fkm-pPGoZU5h0Mtgx_EtTbaO2miTDn--ip7e5fF4jN0IKNFqDQ80fnXnUgohS0Bd4QWbSaVEYVHKK7ZI6QQA0lRSazVjz_WUcnznzZiP8RAH6vnWd4dj5mEaXO7ikPhd3WzTPQ9x5MuzHzKve0qpC52jX-GaXQbqk1_8c842L8tN_Vqsm9Vb_bQu6FFjgYREe3SgvSKjW90KcEDgnTFoK4XaC2ortTeVoiBVawBb7SwGwiBkUHN2-5f9GOPn5FPeneI0_gynnTRgjTTWGPUN5RZLQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608626866</pqid></control><display><type>article</type><title>Custom Orthogonal Weight functions (COWs) for Event Classification</title><source>Publicly Available Content (ProQuest)</source><creator>Dembinski, Hans ; Kenzie, Matthew ; Langenbruch, Christoph ; Schmelling, Michael</creator><creatorcontrib>Dembinski, Hans ; Kenzie, Matthew ; Langenbruch, Christoph ; Schmelling, Michael</creatorcontrib><description>A common problem in data analysis is the separation of signal and background. We revisit and generalise the so-called \(sWeights\) method, which allows one to calculate an empirical estimate of the signal density of a control variable using a fit of a mixed signal and background model to a discriminating variable. We show that \(sWeights\) are a special case of a larger class of Custom Orthogonal Weight functions (COWs), which can be applied to a more general class of problems in which the discriminating and control variables are not necessarily independent and still achieve close to optimal performance. We also investigate the properties of parameters estimated from fits of statistical models to \(sWeights\) and provide closed formulas for the asymptotic covariance matrix of the fitted parameters. To illustrate our findings, we discuss several practical applications of these techniques.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2112.04574</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Covariance matrix ; Data analysis ; Empirical analysis ; Independent variables ; Parameter estimation ; Statistical models ; Weighting functions</subject><ispartof>arXiv.org, 2022-01</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2608626866?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,27923,37010,44588</link.rule.ids></links><search><creatorcontrib>Dembinski, Hans</creatorcontrib><creatorcontrib>Kenzie, Matthew</creatorcontrib><creatorcontrib>Langenbruch, Christoph</creatorcontrib><creatorcontrib>Schmelling, Michael</creatorcontrib><title>Custom Orthogonal Weight functions (COWs) for Event Classification</title><title>arXiv.org</title><description>A common problem in data analysis is the separation of signal and background. We revisit and generalise the so-called \(sWeights\) method, which allows one to calculate an empirical estimate of the signal density of a control variable using a fit of a mixed signal and background model to a discriminating variable. We show that \(sWeights\) are a special case of a larger class of Custom Orthogonal Weight functions (COWs), which can be applied to a more general class of problems in which the discriminating and control variables are not necessarily independent and still achieve close to optimal performance. We also investigate the properties of parameters estimated from fits of statistical models to \(sWeights\) and provide closed formulas for the asymptotic covariance matrix of the fitted parameters. To illustrate our findings, we discuss several practical applications of these techniques.</description><subject>Covariance matrix</subject><subject>Data analysis</subject><subject>Empirical analysis</subject><subject>Independent variables</subject><subject>Parameter estimation</subject><subject>Statistical models</subject><subject>Weighting functions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjkFLwzAYQIMgOOZ-gLeAFz20fkm-pPGoZU5h0Mtgx_EtTbaO2miTDn--ip7e5fF4jN0IKNFqDQ80fnXnUgohS0Bd4QWbSaVEYVHKK7ZI6QQA0lRSazVjz_WUcnznzZiP8RAH6vnWd4dj5mEaXO7ikPhd3WzTPQ9x5MuzHzKve0qpC52jX-GaXQbqk1_8c842L8tN_Vqsm9Vb_bQu6FFjgYREe3SgvSKjW90KcEDgnTFoK4XaC2ortTeVoiBVawBb7SwGwiBkUHN2-5f9GOPn5FPeneI0_gynnTRgjTTWGPUN5RZLQA</recordid><startdate>20220126</startdate><enddate>20220126</enddate><creator>Dembinski, Hans</creator><creator>Kenzie, Matthew</creator><creator>Langenbruch, Christoph</creator><creator>Schmelling, Michael</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220126</creationdate><title>Custom Orthogonal Weight functions (COWs) for Event Classification</title><author>Dembinski, Hans ; Kenzie, Matthew ; Langenbruch, Christoph ; Schmelling, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a954-4a4aab4c05e3a65d5d10c0a0ec66487345e1ad73b673af23d604d5c84fa4f12f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Covariance matrix</topic><topic>Data analysis</topic><topic>Empirical analysis</topic><topic>Independent variables</topic><topic>Parameter estimation</topic><topic>Statistical models</topic><topic>Weighting functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Dembinski, Hans</creatorcontrib><creatorcontrib>Kenzie, Matthew</creatorcontrib><creatorcontrib>Langenbruch, Christoph</creatorcontrib><creatorcontrib>Schmelling, Michael</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dembinski, Hans</au><au>Kenzie, Matthew</au><au>Langenbruch, Christoph</au><au>Schmelling, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Custom Orthogonal Weight functions (COWs) for Event Classification</atitle><jtitle>arXiv.org</jtitle><date>2022-01-26</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>A common problem in data analysis is the separation of signal and background. We revisit and generalise the so-called \(sWeights\) method, which allows one to calculate an empirical estimate of the signal density of a control variable using a fit of a mixed signal and background model to a discriminating variable. We show that \(sWeights\) are a special case of a larger class of Custom Orthogonal Weight functions (COWs), which can be applied to a more general class of problems in which the discriminating and control variables are not necessarily independent and still achieve close to optimal performance. We also investigate the properties of parameters estimated from fits of statistical models to \(sWeights\) and provide closed formulas for the asymptotic covariance matrix of the fitted parameters. To illustrate our findings, we discuss several practical applications of these techniques.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2112.04574</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2608626866 |
source | Publicly Available Content (ProQuest) |
subjects | Covariance matrix Data analysis Empirical analysis Independent variables Parameter estimation Statistical models Weighting functions |
title | Custom Orthogonal Weight functions (COWs) for Event Classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Custom%20Orthogonal%20Weight%20functions%20(COWs)%20for%20Event%20Classification&rft.jtitle=arXiv.org&rft.au=Dembinski,%20Hans&rft.date=2022-01-26&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2112.04574&rft_dat=%3Cproquest%3E2608626866%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a954-4a4aab4c05e3a65d5d10c0a0ec66487345e1ad73b673af23d604d5c84fa4f12f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2608626866&rft_id=info:pmid/&rfr_iscdi=true |