Loading…
Normalized solutions for a Schrödinger equation with critical growth in RN
In this paper we study the existence of normalized solutions to the following nonlinear Schrödinger equation with critical growth - Δ u = λ u + f ( u ) , in R N , u > 0 , ∫ R N | u | 2 d x = a 2 , where a > 0 , λ ∈ R and f has an exponential critical growth when N = 2 , and f ( t ) = μ | t | q...
Saved in:
Published in: | Calculus of variations and partial differential equations 2022, Vol.61 (1) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-p157t-f5807c7026d625b881fe4cb9c9b95c7cb8be8fa975deec00027f52ca35503f513 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Calculus of variations and partial differential equations |
container_volume | 61 |
creator | Alves, Claudianor O. Ji, Chao Miyagaki, Olimpio H. |
description | In this paper we study the existence of normalized solutions to the following nonlinear Schrödinger equation with critical growth
-
Δ
u
=
λ
u
+
f
(
u
)
,
in
R
N
,
u
>
0
,
∫
R
N
|
u
|
2
d
x
=
a
2
,
where
a
>
0
,
λ
∈
R
and
f
has an exponential critical growth when
N
=
2
, and
f
(
t
)
=
μ
|
t
|
q
-
2
t
+
|
t
|
2
∗
-
2
t
with
q
∈
(
2
+
4
N
,
2
∗
)
,
μ
>
0
and
2
∗
=
2
N
N
-
2
when
N
≥
3
. Our main results complement some recent results for
N
≥
3
and it is totally new for
N
=
2
. |
doi_str_mv | 10.1007/s00526-021-02123-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2608890937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608890937</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-f5807c7026d625b881fe4cb9c9b95c7cb8be8fa975deec00027f52ca35503f513</originalsourceid><addsrcrecordid>eNpFkNtKAzEQhoMoWKsv4FXA6-gk2WySSymesFTwcB2y2aTdsu62yS4FH8wX8MXcbQUvhmH4P2aYD6FLCtcUQN4kAMFyAoyOxTihR2hCM84IKC6O0QR0lhGW5_oUnaW0BqBCsWyCnhdt_LR19eVLnNq676q2STi0EVv85lbx57usmqWP2G97O4Z4V3Ur7GLVVc7WeBnb3TBXDX5dnKOTYOvkL_76FH3c373PHsn85eFpdjsnGypkR4JQIJ0Elpc5E4VSNPjMFdrpQgsnXaEKr4LVUpTeOwBgMgjmLBcCeBCUT9HVYe8mttvep86s2z42w0nDclBKg-ZyoPiBSpu4f-GfomBGa-ZgzQzGzN6aofwX20tglA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608890937</pqid></control><display><type>article</type><title>Normalized solutions for a Schrödinger equation with critical growth in RN</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Alves, Claudianor O. ; Ji, Chao ; Miyagaki, Olimpio H.</creator><creatorcontrib>Alves, Claudianor O. ; Ji, Chao ; Miyagaki, Olimpio H.</creatorcontrib><description>In this paper we study the existence of normalized solutions to the following nonlinear Schrödinger equation with critical growth
-
Δ
u
=
λ
u
+
f
(
u
)
,
in
R
N
,
u
>
0
,
∫
R
N
|
u
|
2
d
x
=
a
2
,
where
a
>
0
,
λ
∈
R
and
f
has an exponential critical growth when
N
=
2
, and
f
(
t
)
=
μ
|
t
|
q
-
2
t
+
|
t
|
2
∗
-
2
t
with
q
∈
(
2
+
4
N
,
2
∗
)
,
μ
>
0
and
2
∗
=
2
N
N
-
2
when
N
≥
3
. Our main results complement some recent results for
N
≥
3
and it is totally new for
N
=
2
.</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-021-02123-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Calculus of Variations and Optimal Control; Optimization ; Control ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Schrodinger equation ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2022, Vol.61 (1)</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p157t-f5807c7026d625b881fe4cb9c9b95c7cb8be8fa975deec00027f52ca35503f513</cites><orcidid>0000-0002-2657-0509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Alves, Claudianor O.</creatorcontrib><creatorcontrib>Ji, Chao</creatorcontrib><creatorcontrib>Miyagaki, Olimpio H.</creatorcontrib><title>Normalized solutions for a Schrödinger equation with critical growth in RN</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>In this paper we study the existence of normalized solutions to the following nonlinear Schrödinger equation with critical growth
-
Δ
u
=
λ
u
+
f
(
u
)
,
in
R
N
,
u
>
0
,
∫
R
N
|
u
|
2
d
x
=
a
2
,
where
a
>
0
,
λ
∈
R
and
f
has an exponential critical growth when
N
=
2
, and
f
(
t
)
=
μ
|
t
|
q
-
2
t
+
|
t
|
2
∗
-
2
t
with
q
∈
(
2
+
4
N
,
2
∗
)
,
μ
>
0
and
2
∗
=
2
N
N
-
2
when
N
≥
3
. Our main results complement some recent results for
N
≥
3
and it is totally new for
N
=
2
.</description><subject>Analysis</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Schrodinger equation</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkNtKAzEQhoMoWKsv4FXA6-gk2WySSymesFTwcB2y2aTdsu62yS4FH8wX8MXcbQUvhmH4P2aYD6FLCtcUQN4kAMFyAoyOxTihR2hCM84IKC6O0QR0lhGW5_oUnaW0BqBCsWyCnhdt_LR19eVLnNq676q2STi0EVv85lbx57usmqWP2G97O4Z4V3Ur7GLVVc7WeBnb3TBXDX5dnKOTYOvkL_76FH3c373PHsn85eFpdjsnGypkR4JQIJ0Elpc5E4VSNPjMFdrpQgsnXaEKr4LVUpTeOwBgMgjmLBcCeBCUT9HVYe8mttvep86s2z42w0nDclBKg-ZyoPiBSpu4f-GfomBGa-ZgzQzGzN6aofwX20tglA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Alves, Claudianor O.</creator><creator>Ji, Chao</creator><creator>Miyagaki, Olimpio H.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-2657-0509</orcidid></search><sort><creationdate>2022</creationdate><title>Normalized solutions for a Schrödinger equation with critical growth in RN</title><author>Alves, Claudianor O. ; Ji, Chao ; Miyagaki, Olimpio H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-f5807c7026d625b881fe4cb9c9b95c7cb8be8fa975deec00027f52ca35503f513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Schrodinger equation</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alves, Claudianor O.</creatorcontrib><creatorcontrib>Ji, Chao</creatorcontrib><creatorcontrib>Miyagaki, Olimpio H.</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alves, Claudianor O.</au><au>Ji, Chao</au><au>Miyagaki, Olimpio H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normalized solutions for a Schrödinger equation with critical growth in RN</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2022</date><risdate>2022</risdate><volume>61</volume><issue>1</issue><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>In this paper we study the existence of normalized solutions to the following nonlinear Schrödinger equation with critical growth
-
Δ
u
=
λ
u
+
f
(
u
)
,
in
R
N
,
u
>
0
,
∫
R
N
|
u
|
2
d
x
=
a
2
,
where
a
>
0
,
λ
∈
R
and
f
has an exponential critical growth when
N
=
2
, and
f
(
t
)
=
μ
|
t
|
q
-
2
t
+
|
t
|
2
∗
-
2
t
with
q
∈
(
2
+
4
N
,
2
∗
)
,
μ
>
0
and
2
∗
=
2
N
N
-
2
when
N
≥
3
. Our main results complement some recent results for
N
≥
3
and it is totally new for
N
=
2
.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-021-02123-1</doi><orcidid>https://orcid.org/0000-0002-2657-0509</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0944-2669 |
ispartof | Calculus of variations and partial differential equations, 2022, Vol.61 (1) |
issn | 0944-2669 1432-0835 |
language | eng |
recordid | cdi_proquest_journals_2608890937 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Analysis Calculus of Variations and Optimal Control Optimization Control Mathematical and Computational Physics Mathematics Mathematics and Statistics Schrodinger equation Systems Theory Theoretical |
title | Normalized solutions for a Schrödinger equation with critical growth in RN |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A23%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normalized%20solutions%20for%20a%20Schr%C3%B6dinger%20equation%20with%20critical%20growth%20in%20RN&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Alves,%20Claudianor%20O.&rft.date=2022&rft.volume=61&rft.issue=1&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-021-02123-1&rft_dat=%3Cproquest_sprin%3E2608890937%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p157t-f5807c7026d625b881fe4cb9c9b95c7cb8be8fa975deec00027f52ca35503f513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2608890937&rft_id=info:pmid/&rfr_iscdi=true |