Loading…

Normalized solutions for a Schrödinger equation with critical growth in RN

In this paper we study the existence of normalized solutions to the following nonlinear Schrödinger equation with critical growth - Δ u = λ u + f ( u ) , in R N , u > 0 , ∫ R N | u | 2 d x = a 2 , where a > 0 , λ ∈ R and f has an exponential critical growth when N = 2 , and f ( t ) = μ | t | q...

Full description

Saved in:
Bibliographic Details
Published in:Calculus of variations and partial differential equations 2022, Vol.61 (1)
Main Authors: Alves, Claudianor O., Ji, Chao, Miyagaki, Olimpio H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-p157t-f5807c7026d625b881fe4cb9c9b95c7cb8be8fa975deec00027f52ca35503f513
container_end_page
container_issue 1
container_start_page
container_title Calculus of variations and partial differential equations
container_volume 61
creator Alves, Claudianor O.
Ji, Chao
Miyagaki, Olimpio H.
description In this paper we study the existence of normalized solutions to the following nonlinear Schrödinger equation with critical growth - Δ u = λ u + f ( u ) , in R N , u > 0 , ∫ R N | u | 2 d x = a 2 , where a > 0 , λ ∈ R and f has an exponential critical growth when N = 2 , and f ( t ) = μ | t | q - 2 t + | t | 2 ∗ - 2 t with q ∈ ( 2 + 4 N , 2 ∗ ) , μ > 0 and 2 ∗ = 2 N N - 2 when N ≥ 3 . Our main results complement some recent results for N ≥ 3 and it is totally new for N = 2 .
doi_str_mv 10.1007/s00526-021-02123-1
format article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2608890937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608890937</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-f5807c7026d625b881fe4cb9c9b95c7cb8be8fa975deec00027f52ca35503f513</originalsourceid><addsrcrecordid>eNpFkNtKAzEQhoMoWKsv4FXA6-gk2WySSymesFTwcB2y2aTdsu62yS4FH8wX8MXcbQUvhmH4P2aYD6FLCtcUQN4kAMFyAoyOxTihR2hCM84IKC6O0QR0lhGW5_oUnaW0BqBCsWyCnhdt_LR19eVLnNq676q2STi0EVv85lbx57usmqWP2G97O4Z4V3Ur7GLVVc7WeBnb3TBXDX5dnKOTYOvkL_76FH3c373PHsn85eFpdjsnGypkR4JQIJ0Elpc5E4VSNPjMFdrpQgsnXaEKr4LVUpTeOwBgMgjmLBcCeBCUT9HVYe8mttvep86s2z42w0nDclBKg-ZyoPiBSpu4f-GfomBGa-ZgzQzGzN6aofwX20tglA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608890937</pqid></control><display><type>article</type><title>Normalized solutions for a Schrödinger equation with critical growth in RN</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Alves, Claudianor O. ; Ji, Chao ; Miyagaki, Olimpio H.</creator><creatorcontrib>Alves, Claudianor O. ; Ji, Chao ; Miyagaki, Olimpio H.</creatorcontrib><description>In this paper we study the existence of normalized solutions to the following nonlinear Schrödinger equation with critical growth - Δ u = λ u + f ( u ) , in R N , u &gt; 0 , ∫ R N | u | 2 d x = a 2 , where a &gt; 0 , λ ∈ R and f has an exponential critical growth when N = 2 , and f ( t ) = μ | t | q - 2 t + | t | 2 ∗ - 2 t with q ∈ ( 2 + 4 N , 2 ∗ ) , μ &gt; 0 and 2 ∗ = 2 N N - 2 when N ≥ 3 . Our main results complement some recent results for N ≥ 3 and it is totally new for N = 2 .</description><identifier>ISSN: 0944-2669</identifier><identifier>EISSN: 1432-0835</identifier><identifier>DOI: 10.1007/s00526-021-02123-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Calculus of Variations and Optimal Control; Optimization ; Control ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Schrodinger equation ; Systems Theory ; Theoretical</subject><ispartof>Calculus of variations and partial differential equations, 2022, Vol.61 (1)</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p157t-f5807c7026d625b881fe4cb9c9b95c7cb8be8fa975deec00027f52ca35503f513</cites><orcidid>0000-0002-2657-0509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Alves, Claudianor O.</creatorcontrib><creatorcontrib>Ji, Chao</creatorcontrib><creatorcontrib>Miyagaki, Olimpio H.</creatorcontrib><title>Normalized solutions for a Schrödinger equation with critical growth in RN</title><title>Calculus of variations and partial differential equations</title><addtitle>Calc. Var</addtitle><description>In this paper we study the existence of normalized solutions to the following nonlinear Schrödinger equation with critical growth - Δ u = λ u + f ( u ) , in R N , u &gt; 0 , ∫ R N | u | 2 d x = a 2 , where a &gt; 0 , λ ∈ R and f has an exponential critical growth when N = 2 , and f ( t ) = μ | t | q - 2 t + | t | 2 ∗ - 2 t with q ∈ ( 2 + 4 N , 2 ∗ ) , μ &gt; 0 and 2 ∗ = 2 N N - 2 when N ≥ 3 . Our main results complement some recent results for N ≥ 3 and it is totally new for N = 2 .</description><subject>Analysis</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Schrodinger equation</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0944-2669</issn><issn>1432-0835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpFkNtKAzEQhoMoWKsv4FXA6-gk2WySSymesFTwcB2y2aTdsu62yS4FH8wX8MXcbQUvhmH4P2aYD6FLCtcUQN4kAMFyAoyOxTihR2hCM84IKC6O0QR0lhGW5_oUnaW0BqBCsWyCnhdt_LR19eVLnNq676q2STi0EVv85lbx57usmqWP2G97O4Z4V3Ur7GLVVc7WeBnb3TBXDX5dnKOTYOvkL_76FH3c373PHsn85eFpdjsnGypkR4JQIJ0Elpc5E4VSNPjMFdrpQgsnXaEKr4LVUpTeOwBgMgjmLBcCeBCUT9HVYe8mttvep86s2z42w0nDclBKg-ZyoPiBSpu4f-GfomBGa-ZgzQzGzN6aofwX20tglA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Alves, Claudianor O.</creator><creator>Ji, Chao</creator><creator>Miyagaki, Olimpio H.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-2657-0509</orcidid></search><sort><creationdate>2022</creationdate><title>Normalized solutions for a Schrödinger equation with critical growth in RN</title><author>Alves, Claudianor O. ; Ji, Chao ; Miyagaki, Olimpio H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-f5807c7026d625b881fe4cb9c9b95c7cb8be8fa975deec00027f52ca35503f513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analysis</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Schrodinger equation</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alves, Claudianor O.</creatorcontrib><creatorcontrib>Ji, Chao</creatorcontrib><creatorcontrib>Miyagaki, Olimpio H.</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>Calculus of variations and partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alves, Claudianor O.</au><au>Ji, Chao</au><au>Miyagaki, Olimpio H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Normalized solutions for a Schrödinger equation with critical growth in RN</atitle><jtitle>Calculus of variations and partial differential equations</jtitle><stitle>Calc. Var</stitle><date>2022</date><risdate>2022</risdate><volume>61</volume><issue>1</issue><issn>0944-2669</issn><eissn>1432-0835</eissn><abstract>In this paper we study the existence of normalized solutions to the following nonlinear Schrödinger equation with critical growth - Δ u = λ u + f ( u ) , in R N , u &gt; 0 , ∫ R N | u | 2 d x = a 2 , where a &gt; 0 , λ ∈ R and f has an exponential critical growth when N = 2 , and f ( t ) = μ | t | q - 2 t + | t | 2 ∗ - 2 t with q ∈ ( 2 + 4 N , 2 ∗ ) , μ &gt; 0 and 2 ∗ = 2 N N - 2 when N ≥ 3 . Our main results complement some recent results for N ≥ 3 and it is totally new for N = 2 .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00526-021-02123-1</doi><orcidid>https://orcid.org/0000-0002-2657-0509</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0944-2669
ispartof Calculus of variations and partial differential equations, 2022, Vol.61 (1)
issn 0944-2669
1432-0835
language eng
recordid cdi_proquest_journals_2608890937
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Analysis
Calculus of Variations and Optimal Control
Optimization
Control
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Schrodinger equation
Systems Theory
Theoretical
title Normalized solutions for a Schrödinger equation with critical growth in RN
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A23%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Normalized%20solutions%20for%20a%20Schr%C3%B6dinger%20equation%20with%20critical%20growth%20in%20RN&rft.jtitle=Calculus%20of%20variations%20and%20partial%20differential%20equations&rft.au=Alves,%20Claudianor%20O.&rft.date=2022&rft.volume=61&rft.issue=1&rft.issn=0944-2669&rft.eissn=1432-0835&rft_id=info:doi/10.1007/s00526-021-02123-1&rft_dat=%3Cproquest_sprin%3E2608890937%3C/proquest_sprin%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p157t-f5807c7026d625b881fe4cb9c9b95c7cb8be8fa975deec00027f52ca35503f513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2608890937&rft_id=info:pmid/&rfr_iscdi=true