Loading…

Energy absorption design for crash energy management passenger trains based on scaled model

To improve the passive safety protection of crash energy management (CEM) passenger train, this paper presents the energy absorption design study for CEM passenger trains based on a 1/8th-scale model. By analysing the similarity of thin-walled structures for CEM trains, the similitude ratios of phys...

Full description

Saved in:
Bibliographic Details
Published in:Structural and multidisciplinary optimization 2022, Vol.65 (1), Article 2
Main Authors: Lu, Sisi, Wang, Pan, Ni, Weitao, Yan, Kaibo, Zhao, Shuen, Yang, Chengxing, Xu, Ping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To improve the passive safety protection of crash energy management (CEM) passenger train, this paper presents the energy absorption design study for CEM passenger trains based on a 1/8th-scale model. By analysing the similarity of thin-walled structures for CEM trains, the similitude ratios of physical parameters were obtained and used to design the scaled train model. The dynamic responses of scaled train were analysed through finite element simulation and collision test. Compared to the test results, the errors of dynamic responses in simulation were within 1.79%, indicating that the finite element model of scaled train was accurate and can be used to study the energy absorption characteristics of CEM passenger trains. To improve the crashworthiness of CEM passenger trains, selecting six key parameters affecting energy absorption of head car and middle car as design variables, and taking the maximum energy absorption of head car and the minimum standard deviation of energy absorption for middle cars as targets, a multi-objective optimization was carried out to gain the optimal solution of key energy absorption parameters. Optimization results indicated that the energy absorption of head car has been increased by 195.20%, and the standard deviation of the energy absorption of middle cars has been decreased by 81.06%.
ISSN:1615-147X
1615-1488
DOI:10.1007/s00158-021-03116-6