Loading…

Feature Selection Optimization for Mahalanobis-Taguchi System Using Chaos Quantum-Behavior Particle Swarm

The computational speed in the feature selection of Mahalanobis-Taguchi system (MTS) using standard binary particle swarm optimization (BPSO) is slow and it is easy to fall into the locally optimal solution. This paper proposes an MTS variable optimization method based on chaos quantum-behavior part...

Full description

Saved in:
Bibliographic Details
Published in:Shanghai jiao tong da xue xue bao 2021-12, Vol.26 (6), p.840-846
Main Authors: Liu, Jiufu, Zheng, Rui, Zhou, Zaihong, Zhang, Xinzhe, Yang, Zhong, Wang, Zhisheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2596-a6c90c050a7b17191a8432321b7de88c6c540b345938b0403115f3d8191d43ca3
cites cdi_FETCH-LOGICAL-c2596-a6c90c050a7b17191a8432321b7de88c6c540b345938b0403115f3d8191d43ca3
container_end_page 846
container_issue 6
container_start_page 840
container_title Shanghai jiao tong da xue xue bao
container_volume 26
creator Liu, Jiufu
Zheng, Rui
Zhou, Zaihong
Zhang, Xinzhe
Yang, Zhong
Wang, Zhisheng
description The computational speed in the feature selection of Mahalanobis-Taguchi system (MTS) using standard binary particle swarm optimization (BPSO) is slow and it is easy to fall into the locally optimal solution. This paper proposes an MTS variable optimization method based on chaos quantum-behavior particle swarm. In order to avoid the influence of complex collinearity on the distance measurement results, the Gram-Schmidt orthogonalization method is first used to calculate the Mahalanobis distance (MD) value. Then, the optimal threshold point of the system classification is determined through the receiver operating characteristic (ROC) curve; the misclassification rate and the selected variables are defined; the multi-objective mixed programming model is built. The chaos quantum-behavior particle swarm optimization (CQPSO) algorithm is proposed to solve the optimization combination, and the algorithm performs binary coding on the particle based on probability. Using the optimized combination of variables, a new Mahalanobis-Taguchi metric based prediction system is established to complete the task of precise discrimination. Finally, a fault diagnosis for the steel plate is taken as an example. The experimental results show that the proposed method can effectively enhance the iterative speed and optimization precision of the particles, and the prediction accuracy of the optimized MTS is significantly improved.
doi_str_mv 10.1007/s12204-020-2236-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2609385645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2609385645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2596-a6c90c050a7b17191a8432321b7de88c6c540b345938b0403115f3d8191d43ca3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhosoOKc_wLuC19F8NGl6qcOpMJmy7TqcZuma0Y-ZtMr89WZW8EqvcgLP-xzOG0WXBF8TjNMbTyjFCcIUI0qZQOIoGpEs40gSKY_DHCBESEpPozPvtxgnmLFsFNmpga53Jl6YyujOtk0833W2tp_w_SlaFz9DCRU0bW49WsKm16WNF3vfmTpeedts4kkJrY9fe2i6vkZ3poR3G3Iv4Dqrq-D-AFefRycFVN5c_LzjaDW9X04e0Wz-8DS5nSFNeSYQCJ1hjTmGNCcpyQjIhFFGSZ6ujZRaaJ7gnCU8YzI_XEEIL9haBnKdMA1sHF0N3p1r33rjO7Vte9eElYoKIqRMeYr_p3Bwc5HwQJGB0q713plC7Zytwe0VwepQqRp6V6F3dehdiZChQ8YHttkY92v-O_QFhJmD5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609385645</pqid></control><display><type>article</type><title>Feature Selection Optimization for Mahalanobis-Taguchi System Using Chaos Quantum-Behavior Particle Swarm</title><source>Springer Nature</source><creator>Liu, Jiufu ; Zheng, Rui ; Zhou, Zaihong ; Zhang, Xinzhe ; Yang, Zhong ; Wang, Zhisheng</creator><creatorcontrib>Liu, Jiufu ; Zheng, Rui ; Zhou, Zaihong ; Zhang, Xinzhe ; Yang, Zhong ; Wang, Zhisheng</creatorcontrib><description>The computational speed in the feature selection of Mahalanobis-Taguchi system (MTS) using standard binary particle swarm optimization (BPSO) is slow and it is easy to fall into the locally optimal solution. This paper proposes an MTS variable optimization method based on chaos quantum-behavior particle swarm. In order to avoid the influence of complex collinearity on the distance measurement results, the Gram-Schmidt orthogonalization method is first used to calculate the Mahalanobis distance (MD) value. Then, the optimal threshold point of the system classification is determined through the receiver operating characteristic (ROC) curve; the misclassification rate and the selected variables are defined; the multi-objective mixed programming model is built. The chaos quantum-behavior particle swarm optimization (CQPSO) algorithm is proposed to solve the optimization combination, and the algorithm performs binary coding on the particle based on probability. Using the optimized combination of variables, a new Mahalanobis-Taguchi metric based prediction system is established to complete the task of precise discrimination. Finally, a fault diagnosis for the steel plate is taken as an example. The experimental results show that the proposed method can effectively enhance the iterative speed and optimization precision of the particles, and the prediction accuracy of the optimized MTS is significantly improved.</description><identifier>ISSN: 1007-1172</identifier><identifier>ISSN: 1674-8115</identifier><identifier>EISSN: 1995-8188</identifier><identifier>DOI: 10.1007/s12204-020-2236-6</identifier><language>eng</language><publisher>Shanghai: Shanghai Jiaotong University Press</publisher><subject>Algorithms ; Architecture ; Binary codes ; Collinearity ; Computer applications ; Computer Science ; Distance measurement ; Electrical Engineering ; Engineering ; Fault diagnosis ; Feature selection ; Iterative methods ; Life Sciences ; Materials Science ; Optimization ; Particle swarm optimization ; Statistical analysis ; Steel plates ; Taguchi methods</subject><ispartof>Shanghai jiao tong da xue xue bao, 2021-12, Vol.26 (6), p.840-846</ispartof><rights>Shanghai Jiao Tong University and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Shanghai Jiao Tong University and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><rights>Copyright Shanghai Jiaotong University Press Dec 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2596-a6c90c050a7b17191a8432321b7de88c6c540b345938b0403115f3d8191d43ca3</citedby><cites>FETCH-LOGICAL-c2596-a6c90c050a7b17191a8432321b7de88c6c540b345938b0403115f3d8191d43ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Jiufu</creatorcontrib><creatorcontrib>Zheng, Rui</creatorcontrib><creatorcontrib>Zhou, Zaihong</creatorcontrib><creatorcontrib>Zhang, Xinzhe</creatorcontrib><creatorcontrib>Yang, Zhong</creatorcontrib><creatorcontrib>Wang, Zhisheng</creatorcontrib><title>Feature Selection Optimization for Mahalanobis-Taguchi System Using Chaos Quantum-Behavior Particle Swarm</title><title>Shanghai jiao tong da xue xue bao</title><addtitle>J. Shanghai Jiaotong Univ. (Sci.)</addtitle><description>The computational speed in the feature selection of Mahalanobis-Taguchi system (MTS) using standard binary particle swarm optimization (BPSO) is slow and it is easy to fall into the locally optimal solution. This paper proposes an MTS variable optimization method based on chaos quantum-behavior particle swarm. In order to avoid the influence of complex collinearity on the distance measurement results, the Gram-Schmidt orthogonalization method is first used to calculate the Mahalanobis distance (MD) value. Then, the optimal threshold point of the system classification is determined through the receiver operating characteristic (ROC) curve; the misclassification rate and the selected variables are defined; the multi-objective mixed programming model is built. The chaos quantum-behavior particle swarm optimization (CQPSO) algorithm is proposed to solve the optimization combination, and the algorithm performs binary coding on the particle based on probability. Using the optimized combination of variables, a new Mahalanobis-Taguchi metric based prediction system is established to complete the task of precise discrimination. Finally, a fault diagnosis for the steel plate is taken as an example. The experimental results show that the proposed method can effectively enhance the iterative speed and optimization precision of the particles, and the prediction accuracy of the optimized MTS is significantly improved.</description><subject>Algorithms</subject><subject>Architecture</subject><subject>Binary codes</subject><subject>Collinearity</subject><subject>Computer applications</subject><subject>Computer Science</subject><subject>Distance measurement</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Fault diagnosis</subject><subject>Feature selection</subject><subject>Iterative methods</subject><subject>Life Sciences</subject><subject>Materials Science</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Statistical analysis</subject><subject>Steel plates</subject><subject>Taguchi methods</subject><issn>1007-1172</issn><issn>1674-8115</issn><issn>1995-8188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhosoOKc_wLuC19F8NGl6qcOpMJmy7TqcZuma0Y-ZtMr89WZW8EqvcgLP-xzOG0WXBF8TjNMbTyjFCcIUI0qZQOIoGpEs40gSKY_DHCBESEpPozPvtxgnmLFsFNmpga53Jl6YyujOtk0833W2tp_w_SlaFz9DCRU0bW49WsKm16WNF3vfmTpeedts4kkJrY9fe2i6vkZ3poR3G3Iv4Dqrq-D-AFefRycFVN5c_LzjaDW9X04e0Wz-8DS5nSFNeSYQCJ1hjTmGNCcpyQjIhFFGSZ6ujZRaaJ7gnCU8YzI_XEEIL9haBnKdMA1sHF0N3p1r33rjO7Vte9eElYoKIqRMeYr_p3Bwc5HwQJGB0q713plC7Zytwe0VwepQqRp6V6F3dehdiZChQ8YHttkY92v-O_QFhJmD5A</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Liu, Jiufu</creator><creator>Zheng, Rui</creator><creator>Zhou, Zaihong</creator><creator>Zhang, Xinzhe</creator><creator>Yang, Zhong</creator><creator>Wang, Zhisheng</creator><general>Shanghai Jiaotong University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20211201</creationdate><title>Feature Selection Optimization for Mahalanobis-Taguchi System Using Chaos Quantum-Behavior Particle Swarm</title><author>Liu, Jiufu ; Zheng, Rui ; Zhou, Zaihong ; Zhang, Xinzhe ; Yang, Zhong ; Wang, Zhisheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2596-a6c90c050a7b17191a8432321b7de88c6c540b345938b0403115f3d8191d43ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Architecture</topic><topic>Binary codes</topic><topic>Collinearity</topic><topic>Computer applications</topic><topic>Computer Science</topic><topic>Distance measurement</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Fault diagnosis</topic><topic>Feature selection</topic><topic>Iterative methods</topic><topic>Life Sciences</topic><topic>Materials Science</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Statistical analysis</topic><topic>Steel plates</topic><topic>Taguchi methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jiufu</creatorcontrib><creatorcontrib>Zheng, Rui</creatorcontrib><creatorcontrib>Zhou, Zaihong</creatorcontrib><creatorcontrib>Zhang, Xinzhe</creatorcontrib><creatorcontrib>Yang, Zhong</creatorcontrib><creatorcontrib>Wang, Zhisheng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Shanghai jiao tong da xue xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jiufu</au><au>Zheng, Rui</au><au>Zhou, Zaihong</au><au>Zhang, Xinzhe</au><au>Yang, Zhong</au><au>Wang, Zhisheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature Selection Optimization for Mahalanobis-Taguchi System Using Chaos Quantum-Behavior Particle Swarm</atitle><jtitle>Shanghai jiao tong da xue xue bao</jtitle><stitle>J. Shanghai Jiaotong Univ. (Sci.)</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>26</volume><issue>6</issue><spage>840</spage><epage>846</epage><pages>840-846</pages><issn>1007-1172</issn><issn>1674-8115</issn><eissn>1995-8188</eissn><abstract>The computational speed in the feature selection of Mahalanobis-Taguchi system (MTS) using standard binary particle swarm optimization (BPSO) is slow and it is easy to fall into the locally optimal solution. This paper proposes an MTS variable optimization method based on chaos quantum-behavior particle swarm. In order to avoid the influence of complex collinearity on the distance measurement results, the Gram-Schmidt orthogonalization method is first used to calculate the Mahalanobis distance (MD) value. Then, the optimal threshold point of the system classification is determined through the receiver operating characteristic (ROC) curve; the misclassification rate and the selected variables are defined; the multi-objective mixed programming model is built. The chaos quantum-behavior particle swarm optimization (CQPSO) algorithm is proposed to solve the optimization combination, and the algorithm performs binary coding on the particle based on probability. Using the optimized combination of variables, a new Mahalanobis-Taguchi metric based prediction system is established to complete the task of precise discrimination. Finally, a fault diagnosis for the steel plate is taken as an example. The experimental results show that the proposed method can effectively enhance the iterative speed and optimization precision of the particles, and the prediction accuracy of the optimized MTS is significantly improved.</abstract><cop>Shanghai</cop><pub>Shanghai Jiaotong University Press</pub><doi>10.1007/s12204-020-2236-6</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1007-1172
ispartof Shanghai jiao tong da xue xue bao, 2021-12, Vol.26 (6), p.840-846
issn 1007-1172
1674-8115
1995-8188
language eng
recordid cdi_proquest_journals_2609385645
source Springer Nature
subjects Algorithms
Architecture
Binary codes
Collinearity
Computer applications
Computer Science
Distance measurement
Electrical Engineering
Engineering
Fault diagnosis
Feature selection
Iterative methods
Life Sciences
Materials Science
Optimization
Particle swarm optimization
Statistical analysis
Steel plates
Taguchi methods
title Feature Selection Optimization for Mahalanobis-Taguchi System Using Chaos Quantum-Behavior Particle Swarm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A38%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20Selection%20Optimization%20for%20Mahalanobis-Taguchi%20System%20Using%20Chaos%20Quantum-Behavior%20Particle%20Swarm&rft.jtitle=Shanghai%20jiao%20tong%20da%20xue%20xue%20bao&rft.au=Liu,%20Jiufu&rft.date=2021-12-01&rft.volume=26&rft.issue=6&rft.spage=840&rft.epage=846&rft.pages=840-846&rft.issn=1007-1172&rft.eissn=1995-8188&rft_id=info:doi/10.1007/s12204-020-2236-6&rft_dat=%3Cproquest_cross%3E2609385645%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2596-a6c90c050a7b17191a8432321b7de88c6c540b345938b0403115f3d8191d43ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2609385645&rft_id=info:pmid/&rfr_iscdi=true