Loading…
Feature Selection Optimization for Mahalanobis-Taguchi System Using Chaos Quantum-Behavior Particle Swarm
The computational speed in the feature selection of Mahalanobis-Taguchi system (MTS) using standard binary particle swarm optimization (BPSO) is slow and it is easy to fall into the locally optimal solution. This paper proposes an MTS variable optimization method based on chaos quantum-behavior part...
Saved in:
Published in: | Shanghai jiao tong da xue xue bao 2021-12, Vol.26 (6), p.840-846 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2596-a6c90c050a7b17191a8432321b7de88c6c540b345938b0403115f3d8191d43ca3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2596-a6c90c050a7b17191a8432321b7de88c6c540b345938b0403115f3d8191d43ca3 |
container_end_page | 846 |
container_issue | 6 |
container_start_page | 840 |
container_title | Shanghai jiao tong da xue xue bao |
container_volume | 26 |
creator | Liu, Jiufu Zheng, Rui Zhou, Zaihong Zhang, Xinzhe Yang, Zhong Wang, Zhisheng |
description | The computational speed in the feature selection of Mahalanobis-Taguchi system (MTS) using standard binary particle swarm optimization (BPSO) is slow and it is easy to fall into the locally optimal solution. This paper proposes an MTS variable optimization method based on chaos quantum-behavior particle swarm. In order to avoid the influence of complex collinearity on the distance measurement results, the Gram-Schmidt orthogonalization method is first used to calculate the Mahalanobis distance (MD) value. Then, the optimal threshold point of the system classification is determined through the receiver operating characteristic (ROC) curve; the misclassification rate and the selected variables are defined; the multi-objective mixed programming model is built. The chaos quantum-behavior particle swarm optimization (CQPSO) algorithm is proposed to solve the optimization combination, and the algorithm performs binary coding on the particle based on probability. Using the optimized combination of variables, a new Mahalanobis-Taguchi metric based prediction system is established to complete the task of precise discrimination. Finally, a fault diagnosis for the steel plate is taken as an example. The experimental results show that the proposed method can effectively enhance the iterative speed and optimization precision of the particles, and the prediction accuracy of the optimized MTS is significantly improved. |
doi_str_mv | 10.1007/s12204-020-2236-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2609385645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2609385645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2596-a6c90c050a7b17191a8432321b7de88c6c540b345938b0403115f3d8191d43ca3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhosoOKc_wLuC19F8NGl6qcOpMJmy7TqcZuma0Y-ZtMr89WZW8EqvcgLP-xzOG0WXBF8TjNMbTyjFCcIUI0qZQOIoGpEs40gSKY_DHCBESEpPozPvtxgnmLFsFNmpga53Jl6YyujOtk0833W2tp_w_SlaFz9DCRU0bW49WsKm16WNF3vfmTpeedts4kkJrY9fe2i6vkZ3poR3G3Iv4Dqrq-D-AFefRycFVN5c_LzjaDW9X04e0Wz-8DS5nSFNeSYQCJ1hjTmGNCcpyQjIhFFGSZ6ujZRaaJ7gnCU8YzI_XEEIL9haBnKdMA1sHF0N3p1r33rjO7Vte9eElYoKIqRMeYr_p3Bwc5HwQJGB0q713plC7Zytwe0VwepQqRp6V6F3dehdiZChQ8YHttkY92v-O_QFhJmD5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609385645</pqid></control><display><type>article</type><title>Feature Selection Optimization for Mahalanobis-Taguchi System Using Chaos Quantum-Behavior Particle Swarm</title><source>Springer Nature</source><creator>Liu, Jiufu ; Zheng, Rui ; Zhou, Zaihong ; Zhang, Xinzhe ; Yang, Zhong ; Wang, Zhisheng</creator><creatorcontrib>Liu, Jiufu ; Zheng, Rui ; Zhou, Zaihong ; Zhang, Xinzhe ; Yang, Zhong ; Wang, Zhisheng</creatorcontrib><description>The computational speed in the feature selection of Mahalanobis-Taguchi system (MTS) using standard binary particle swarm optimization (BPSO) is slow and it is easy to fall into the locally optimal solution. This paper proposes an MTS variable optimization method based on chaos quantum-behavior particle swarm. In order to avoid the influence of complex collinearity on the distance measurement results, the Gram-Schmidt orthogonalization method is first used to calculate the Mahalanobis distance (MD) value. Then, the optimal threshold point of the system classification is determined through the receiver operating characteristic (ROC) curve; the misclassification rate and the selected variables are defined; the multi-objective mixed programming model is built. The chaos quantum-behavior particle swarm optimization (CQPSO) algorithm is proposed to solve the optimization combination, and the algorithm performs binary coding on the particle based on probability. Using the optimized combination of variables, a new Mahalanobis-Taguchi metric based prediction system is established to complete the task of precise discrimination. Finally, a fault diagnosis for the steel plate is taken as an example. The experimental results show that the proposed method can effectively enhance the iterative speed and optimization precision of the particles, and the prediction accuracy of the optimized MTS is significantly improved.</description><identifier>ISSN: 1007-1172</identifier><identifier>ISSN: 1674-8115</identifier><identifier>EISSN: 1995-8188</identifier><identifier>DOI: 10.1007/s12204-020-2236-6</identifier><language>eng</language><publisher>Shanghai: Shanghai Jiaotong University Press</publisher><subject>Algorithms ; Architecture ; Binary codes ; Collinearity ; Computer applications ; Computer Science ; Distance measurement ; Electrical Engineering ; Engineering ; Fault diagnosis ; Feature selection ; Iterative methods ; Life Sciences ; Materials Science ; Optimization ; Particle swarm optimization ; Statistical analysis ; Steel plates ; Taguchi methods</subject><ispartof>Shanghai jiao tong da xue xue bao, 2021-12, Vol.26 (6), p.840-846</ispartof><rights>Shanghai Jiao Tong University and Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Shanghai Jiao Tong University and Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><rights>Copyright Shanghai Jiaotong University Press Dec 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2596-a6c90c050a7b17191a8432321b7de88c6c540b345938b0403115f3d8191d43ca3</citedby><cites>FETCH-LOGICAL-c2596-a6c90c050a7b17191a8432321b7de88c6c540b345938b0403115f3d8191d43ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Jiufu</creatorcontrib><creatorcontrib>Zheng, Rui</creatorcontrib><creatorcontrib>Zhou, Zaihong</creatorcontrib><creatorcontrib>Zhang, Xinzhe</creatorcontrib><creatorcontrib>Yang, Zhong</creatorcontrib><creatorcontrib>Wang, Zhisheng</creatorcontrib><title>Feature Selection Optimization for Mahalanobis-Taguchi System Using Chaos Quantum-Behavior Particle Swarm</title><title>Shanghai jiao tong da xue xue bao</title><addtitle>J. Shanghai Jiaotong Univ. (Sci.)</addtitle><description>The computational speed in the feature selection of Mahalanobis-Taguchi system (MTS) using standard binary particle swarm optimization (BPSO) is slow and it is easy to fall into the locally optimal solution. This paper proposes an MTS variable optimization method based on chaos quantum-behavior particle swarm. In order to avoid the influence of complex collinearity on the distance measurement results, the Gram-Schmidt orthogonalization method is first used to calculate the Mahalanobis distance (MD) value. Then, the optimal threshold point of the system classification is determined through the receiver operating characteristic (ROC) curve; the misclassification rate and the selected variables are defined; the multi-objective mixed programming model is built. The chaos quantum-behavior particle swarm optimization (CQPSO) algorithm is proposed to solve the optimization combination, and the algorithm performs binary coding on the particle based on probability. Using the optimized combination of variables, a new Mahalanobis-Taguchi metric based prediction system is established to complete the task of precise discrimination. Finally, a fault diagnosis for the steel plate is taken as an example. The experimental results show that the proposed method can effectively enhance the iterative speed and optimization precision of the particles, and the prediction accuracy of the optimized MTS is significantly improved.</description><subject>Algorithms</subject><subject>Architecture</subject><subject>Binary codes</subject><subject>Collinearity</subject><subject>Computer applications</subject><subject>Computer Science</subject><subject>Distance measurement</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Fault diagnosis</subject><subject>Feature selection</subject><subject>Iterative methods</subject><subject>Life Sciences</subject><subject>Materials Science</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Statistical analysis</subject><subject>Steel plates</subject><subject>Taguchi methods</subject><issn>1007-1172</issn><issn>1674-8115</issn><issn>1995-8188</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhosoOKc_wLuC19F8NGl6qcOpMJmy7TqcZuma0Y-ZtMr89WZW8EqvcgLP-xzOG0WXBF8TjNMbTyjFCcIUI0qZQOIoGpEs40gSKY_DHCBESEpPozPvtxgnmLFsFNmpga53Jl6YyujOtk0833W2tp_w_SlaFz9DCRU0bW49WsKm16WNF3vfmTpeedts4kkJrY9fe2i6vkZ3poR3G3Iv4Dqrq-D-AFefRycFVN5c_LzjaDW9X04e0Wz-8DS5nSFNeSYQCJ1hjTmGNCcpyQjIhFFGSZ6ujZRaaJ7gnCU8YzI_XEEIL9haBnKdMA1sHF0N3p1r33rjO7Vte9eElYoKIqRMeYr_p3Bwc5HwQJGB0q713plC7Zytwe0VwepQqRp6V6F3dehdiZChQ8YHttkY92v-O_QFhJmD5A</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Liu, Jiufu</creator><creator>Zheng, Rui</creator><creator>Zhou, Zaihong</creator><creator>Zhang, Xinzhe</creator><creator>Yang, Zhong</creator><creator>Wang, Zhisheng</creator><general>Shanghai Jiaotong University Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>C1K</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20211201</creationdate><title>Feature Selection Optimization for Mahalanobis-Taguchi System Using Chaos Quantum-Behavior Particle Swarm</title><author>Liu, Jiufu ; Zheng, Rui ; Zhou, Zaihong ; Zhang, Xinzhe ; Yang, Zhong ; Wang, Zhisheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2596-a6c90c050a7b17191a8432321b7de88c6c540b345938b0403115f3d8191d43ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Architecture</topic><topic>Binary codes</topic><topic>Collinearity</topic><topic>Computer applications</topic><topic>Computer Science</topic><topic>Distance measurement</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Fault diagnosis</topic><topic>Feature selection</topic><topic>Iterative methods</topic><topic>Life Sciences</topic><topic>Materials Science</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Statistical analysis</topic><topic>Steel plates</topic><topic>Taguchi methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jiufu</creatorcontrib><creatorcontrib>Zheng, Rui</creatorcontrib><creatorcontrib>Zhou, Zaihong</creatorcontrib><creatorcontrib>Zhang, Xinzhe</creatorcontrib><creatorcontrib>Yang, Zhong</creatorcontrib><creatorcontrib>Wang, Zhisheng</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Shanghai jiao tong da xue xue bao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jiufu</au><au>Zheng, Rui</au><au>Zhou, Zaihong</au><au>Zhang, Xinzhe</au><au>Yang, Zhong</au><au>Wang, Zhisheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Feature Selection Optimization for Mahalanobis-Taguchi System Using Chaos Quantum-Behavior Particle Swarm</atitle><jtitle>Shanghai jiao tong da xue xue bao</jtitle><stitle>J. Shanghai Jiaotong Univ. (Sci.)</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>26</volume><issue>6</issue><spage>840</spage><epage>846</epage><pages>840-846</pages><issn>1007-1172</issn><issn>1674-8115</issn><eissn>1995-8188</eissn><abstract>The computational speed in the feature selection of Mahalanobis-Taguchi system (MTS) using standard binary particle swarm optimization (BPSO) is slow and it is easy to fall into the locally optimal solution. This paper proposes an MTS variable optimization method based on chaos quantum-behavior particle swarm. In order to avoid the influence of complex collinearity on the distance measurement results, the Gram-Schmidt orthogonalization method is first used to calculate the Mahalanobis distance (MD) value. Then, the optimal threshold point of the system classification is determined through the receiver operating characteristic (ROC) curve; the misclassification rate and the selected variables are defined; the multi-objective mixed programming model is built. The chaos quantum-behavior particle swarm optimization (CQPSO) algorithm is proposed to solve the optimization combination, and the algorithm performs binary coding on the particle based on probability. Using the optimized combination of variables, a new Mahalanobis-Taguchi metric based prediction system is established to complete the task of precise discrimination. Finally, a fault diagnosis for the steel plate is taken as an example. The experimental results show that the proposed method can effectively enhance the iterative speed and optimization precision of the particles, and the prediction accuracy of the optimized MTS is significantly improved.</abstract><cop>Shanghai</cop><pub>Shanghai Jiaotong University Press</pub><doi>10.1007/s12204-020-2236-6</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1007-1172 |
ispartof | Shanghai jiao tong da xue xue bao, 2021-12, Vol.26 (6), p.840-846 |
issn | 1007-1172 1674-8115 1995-8188 |
language | eng |
recordid | cdi_proquest_journals_2609385645 |
source | Springer Nature |
subjects | Algorithms Architecture Binary codes Collinearity Computer applications Computer Science Distance measurement Electrical Engineering Engineering Fault diagnosis Feature selection Iterative methods Life Sciences Materials Science Optimization Particle swarm optimization Statistical analysis Steel plates Taguchi methods |
title | Feature Selection Optimization for Mahalanobis-Taguchi System Using Chaos Quantum-Behavior Particle Swarm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T04%3A38%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Feature%20Selection%20Optimization%20for%20Mahalanobis-Taguchi%20System%20Using%20Chaos%20Quantum-Behavior%20Particle%20Swarm&rft.jtitle=Shanghai%20jiao%20tong%20da%20xue%20xue%20bao&rft.au=Liu,%20Jiufu&rft.date=2021-12-01&rft.volume=26&rft.issue=6&rft.spage=840&rft.epage=846&rft.pages=840-846&rft.issn=1007-1172&rft.eissn=1995-8188&rft_id=info:doi/10.1007/s12204-020-2236-6&rft_dat=%3Cproquest_cross%3E2609385645%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2596-a6c90c050a7b17191a8432321b7de88c6c540b345938b0403115f3d8191d43ca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2609385645&rft_id=info:pmid/&rfr_iscdi=true |