Loading…
A class of surfactants via PEG modification of the oleate moiety of lactonic sophorolipids: synthesis, characterisation and application
There is ever increasing demand to develop surfactants based on sophorolipids because they are produced by non-pathogenic organisms, biodegradable and less toxic to humans and the environment. Herein, commercially available lactonic sophorolipid was modified via epoxidation of the fatty acid units C...
Saved in:
Published in: | Green chemistry : an international journal and green chemistry resource : GC 2021-12, Vol.23 (24), p.9906-9915 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | There is ever increasing demand to develop surfactants based on sophorolipids because they are produced by non-pathogenic organisms, biodegradable and less toxic to humans and the environment. Herein, commercially available lactonic sophorolipid was modified
via
epoxidation of the fatty acid units CC and subsequent ring-opening of the oxirane with poly(ethylene glycol) of vary chain lengths to deliver a novel range of non-ionic sophorolipid-based surfactants. The methods employed for ring-opening reaction lead to a final surfactant synthesis involving heterogeneous catalysis (metal-exchanged montmorillonite), use of a benign solvent (ethyl acetate) and short reaction time (60 minutes). The resulting surfactants were structurally characterised and a prediction of their potential applications achieved using the hydrophilic-lipophilic balance (HLB) concept, foam capacity and stability of the surfactants at 0.25% surfactant solution. This new family of bio-derivable non-ionic surfactants will be useful as wetting and solubilising agents, oil-in-water emulsifiers and detergents. |
---|---|
ISSN: | 1463-9262 1463-9270 |
DOI: | 10.1039/D1GC02247D |