Loading…

Strength prediction in single beads of large area additive manufactured short‐fiber polymers

The use of fiber reinforcement in large area additive manufactured components is of industrial interest due to the ability to enhance the structural properties of final processed parts. This work presents a methodology to predict the tensile, compressive, and flexural yield strength of single beads...

Full description

Saved in:
Bibliographic Details
Published in:Polymer composites 2021-12, Vol.42 (12), p.6534-6550
Main Authors: Russell, Timothy, Jack, David A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2939-7a5ef97a4faf7dc3789e22938010e99df3c54aa0c69194c9f0a41edd71ebbd7a3
cites cdi_FETCH-LOGICAL-c2939-7a5ef97a4faf7dc3789e22938010e99df3c54aa0c69194c9f0a41edd71ebbd7a3
container_end_page 6550
container_issue 12
container_start_page 6534
container_title Polymer composites
container_volume 42
creator Russell, Timothy
Jack, David A.
description The use of fiber reinforcement in large area additive manufactured components is of industrial interest due to the ability to enhance the structural properties of final processed parts. This work presents a methodology to predict the tensile, compressive, and flexural yield strength of single beads of a large‐scale, 3D printed, short‐fiber reinforced material. The methodology is built on the strength theory of Van Hattum and Bernardo, which combines the Tsai‐Wu failure criteria with Advani and Tucker's orientation averaging technique, allowing fiber orientation flow model results to serve as direct input into strength predictions. Visual advantages of the methodology such as the ability to plot spatially varying strength constants and failure plots are demonstrated. In addition, an analysis of the methodology's sensitivity to various parameters is conducted. Overview of 3D printing melt deposition modeling for internal fiber microstructure realignment resulting in the spatial variation of mechanical properties.
doi_str_mv 10.1002/pc.26319
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2609512043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2609512043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2939-7a5ef97a4faf7dc3789e22938010e99df3c54aa0c69194c9f0a41edd71ebbd7a3</originalsourceid><addsrcrecordid>eNp10M9KxDAQBvAgCq6r4CMEvHjpmjRt0xxl8R8sKKhXwzSZ7GbptjXpKnvzEXxGn8RqvXqaw_y-GfgIOeVsxhlLLzozSwvB1R6Z8DwrE5YXap9MWCrTpBRKHpKjGNeD5EUhJuTlsQ_YLPsV7QJab3rfNtQ3NPpmWSOtEGykraM1hCVSCAgUrPW9f0O6gWbrwPTbIUnjqg3918en8xUG2rX1boMhHpMDB3XEk785Jc_XV0_z22Rxf3M3v1wkJlVCJRJydEpC5sBJa4QsFabDpmScoVLWCZNnAMwUiqvMKMcg42it5FhVVoKYkrPxbhfa1y3GXq_bbWiGlzotmMp5yjIxqPNRmdDGGNDpLvgNhJ3mTP-0pzujf9sbaDLSd1_j7l-nH-aj_wZ07HJL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609512043</pqid></control><display><type>article</type><title>Strength prediction in single beads of large area additive manufactured short‐fiber polymers</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Russell, Timothy ; Jack, David A.</creator><creatorcontrib>Russell, Timothy ; Jack, David A.</creatorcontrib><description>The use of fiber reinforcement in large area additive manufactured components is of industrial interest due to the ability to enhance the structural properties of final processed parts. This work presents a methodology to predict the tensile, compressive, and flexural yield strength of single beads of a large‐scale, 3D printed, short‐fiber reinforced material. The methodology is built on the strength theory of Van Hattum and Bernardo, which combines the Tsai‐Wu failure criteria with Advani and Tucker's orientation averaging technique, allowing fiber orientation flow model results to serve as direct input into strength predictions. Visual advantages of the methodology such as the ability to plot spatially varying strength constants and failure plots are demonstrated. In addition, an analysis of the methodology's sensitivity to various parameters is conducted. Overview of 3D printing melt deposition modeling for internal fiber microstructure realignment resulting in the spatial variation of mechanical properties.</description><identifier>ISSN: 0272-8397</identifier><identifier>EISSN: 1548-0569</identifier><identifier>DOI: 10.1002/pc.26319</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>additive manufacturing ; Beads ; composites ; Compressive strength ; Failure analysis ; Fiber orientation ; Fiber reinforced materials ; Fiber reinforcement ; Finite Element Analysis (FEA) ; Methodology ; Parameter sensitivity ; strength ; structure–property relations ; Three dimensional printing</subject><ispartof>Polymer composites, 2021-12, Vol.42 (12), p.6534-6550</ispartof><rights>2021 Society of Plastics Engineers.</rights><rights>2021 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2939-7a5ef97a4faf7dc3789e22938010e99df3c54aa0c69194c9f0a41edd71ebbd7a3</citedby><cites>FETCH-LOGICAL-c2939-7a5ef97a4faf7dc3789e22938010e99df3c54aa0c69194c9f0a41edd71ebbd7a3</cites><orcidid>0000-0001-7199-0556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Russell, Timothy</creatorcontrib><creatorcontrib>Jack, David A.</creatorcontrib><title>Strength prediction in single beads of large area additive manufactured short‐fiber polymers</title><title>Polymer composites</title><description>The use of fiber reinforcement in large area additive manufactured components is of industrial interest due to the ability to enhance the structural properties of final processed parts. This work presents a methodology to predict the tensile, compressive, and flexural yield strength of single beads of a large‐scale, 3D printed, short‐fiber reinforced material. The methodology is built on the strength theory of Van Hattum and Bernardo, which combines the Tsai‐Wu failure criteria with Advani and Tucker's orientation averaging technique, allowing fiber orientation flow model results to serve as direct input into strength predictions. Visual advantages of the methodology such as the ability to plot spatially varying strength constants and failure plots are demonstrated. In addition, an analysis of the methodology's sensitivity to various parameters is conducted. Overview of 3D printing melt deposition modeling for internal fiber microstructure realignment resulting in the spatial variation of mechanical properties.</description><subject>additive manufacturing</subject><subject>Beads</subject><subject>composites</subject><subject>Compressive strength</subject><subject>Failure analysis</subject><subject>Fiber orientation</subject><subject>Fiber reinforced materials</subject><subject>Fiber reinforcement</subject><subject>Finite Element Analysis (FEA)</subject><subject>Methodology</subject><subject>Parameter sensitivity</subject><subject>strength</subject><subject>structure–property relations</subject><subject>Three dimensional printing</subject><issn>0272-8397</issn><issn>1548-0569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10M9KxDAQBvAgCq6r4CMEvHjpmjRt0xxl8R8sKKhXwzSZ7GbptjXpKnvzEXxGn8RqvXqaw_y-GfgIOeVsxhlLLzozSwvB1R6Z8DwrE5YXap9MWCrTpBRKHpKjGNeD5EUhJuTlsQ_YLPsV7QJab3rfNtQ3NPpmWSOtEGykraM1hCVSCAgUrPW9f0O6gWbrwPTbIUnjqg3918en8xUG2rX1boMhHpMDB3XEk785Jc_XV0_z22Rxf3M3v1wkJlVCJRJydEpC5sBJa4QsFabDpmScoVLWCZNnAMwUiqvMKMcg42it5FhVVoKYkrPxbhfa1y3GXq_bbWiGlzotmMp5yjIxqPNRmdDGGNDpLvgNhJ3mTP-0pzujf9sbaDLSd1_j7l-nH-aj_wZ07HJL</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Russell, Timothy</creator><creator>Jack, David A.</creator><general>John Wiley &amp; Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-7199-0556</orcidid></search><sort><creationdate>202112</creationdate><title>Strength prediction in single beads of large area additive manufactured short‐fiber polymers</title><author>Russell, Timothy ; Jack, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2939-7a5ef97a4faf7dc3789e22938010e99df3c54aa0c69194c9f0a41edd71ebbd7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>additive manufacturing</topic><topic>Beads</topic><topic>composites</topic><topic>Compressive strength</topic><topic>Failure analysis</topic><topic>Fiber orientation</topic><topic>Fiber reinforced materials</topic><topic>Fiber reinforcement</topic><topic>Finite Element Analysis (FEA)</topic><topic>Methodology</topic><topic>Parameter sensitivity</topic><topic>strength</topic><topic>structure–property relations</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Russell, Timothy</creatorcontrib><creatorcontrib>Jack, David A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Russell, Timothy</au><au>Jack, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strength prediction in single beads of large area additive manufactured short‐fiber polymers</atitle><jtitle>Polymer composites</jtitle><date>2021-12</date><risdate>2021</risdate><volume>42</volume><issue>12</issue><spage>6534</spage><epage>6550</epage><pages>6534-6550</pages><issn>0272-8397</issn><eissn>1548-0569</eissn><abstract>The use of fiber reinforcement in large area additive manufactured components is of industrial interest due to the ability to enhance the structural properties of final processed parts. This work presents a methodology to predict the tensile, compressive, and flexural yield strength of single beads of a large‐scale, 3D printed, short‐fiber reinforced material. The methodology is built on the strength theory of Van Hattum and Bernardo, which combines the Tsai‐Wu failure criteria with Advani and Tucker's orientation averaging technique, allowing fiber orientation flow model results to serve as direct input into strength predictions. Visual advantages of the methodology such as the ability to plot spatially varying strength constants and failure plots are demonstrated. In addition, an analysis of the methodology's sensitivity to various parameters is conducted. Overview of 3D printing melt deposition modeling for internal fiber microstructure realignment resulting in the spatial variation of mechanical properties.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pc.26319</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7199-0556</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0272-8397
ispartof Polymer composites, 2021-12, Vol.42 (12), p.6534-6550
issn 0272-8397
1548-0569
language eng
recordid cdi_proquest_journals_2609512043
source Wiley-Blackwell Read & Publish Collection
subjects additive manufacturing
Beads
composites
Compressive strength
Failure analysis
Fiber orientation
Fiber reinforced materials
Fiber reinforcement
Finite Element Analysis (FEA)
Methodology
Parameter sensitivity
strength
structure–property relations
Three dimensional printing
title Strength prediction in single beads of large area additive manufactured short‐fiber polymers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T10%3A16%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strength%20prediction%20in%20single%20beads%20of%20large%20area%20additive%20manufactured%20short%E2%80%90fiber%20polymers&rft.jtitle=Polymer%20composites&rft.au=Russell,%20Timothy&rft.date=2021-12&rft.volume=42&rft.issue=12&rft.spage=6534&rft.epage=6550&rft.pages=6534-6550&rft.issn=0272-8397&rft.eissn=1548-0569&rft_id=info:doi/10.1002/pc.26319&rft_dat=%3Cproquest_cross%3E2609512043%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2939-7a5ef97a4faf7dc3789e22938010e99df3c54aa0c69194c9f0a41edd71ebbd7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2609512043&rft_id=info:pmid/&rfr_iscdi=true