Loading…
Strength prediction in single beads of large area additive manufactured short‐fiber polymers
The use of fiber reinforcement in large area additive manufactured components is of industrial interest due to the ability to enhance the structural properties of final processed parts. This work presents a methodology to predict the tensile, compressive, and flexural yield strength of single beads...
Saved in:
Published in: | Polymer composites 2021-12, Vol.42 (12), p.6534-6550 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2939-7a5ef97a4faf7dc3789e22938010e99df3c54aa0c69194c9f0a41edd71ebbd7a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2939-7a5ef97a4faf7dc3789e22938010e99df3c54aa0c69194c9f0a41edd71ebbd7a3 |
container_end_page | 6550 |
container_issue | 12 |
container_start_page | 6534 |
container_title | Polymer composites |
container_volume | 42 |
creator | Russell, Timothy Jack, David A. |
description | The use of fiber reinforcement in large area additive manufactured components is of industrial interest due to the ability to enhance the structural properties of final processed parts. This work presents a methodology to predict the tensile, compressive, and flexural yield strength of single beads of a large‐scale, 3D printed, short‐fiber reinforced material. The methodology is built on the strength theory of Van Hattum and Bernardo, which combines the Tsai‐Wu failure criteria with Advani and Tucker's orientation averaging technique, allowing fiber orientation flow model results to serve as direct input into strength predictions. Visual advantages of the methodology such as the ability to plot spatially varying strength constants and failure plots are demonstrated. In addition, an analysis of the methodology's sensitivity to various parameters is conducted.
Overview of 3D printing melt deposition modeling for internal fiber microstructure realignment resulting in the spatial variation of mechanical properties. |
doi_str_mv | 10.1002/pc.26319 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2609512043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2609512043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2939-7a5ef97a4faf7dc3789e22938010e99df3c54aa0c69194c9f0a41edd71ebbd7a3</originalsourceid><addsrcrecordid>eNp10M9KxDAQBvAgCq6r4CMEvHjpmjRt0xxl8R8sKKhXwzSZ7GbptjXpKnvzEXxGn8RqvXqaw_y-GfgIOeVsxhlLLzozSwvB1R6Z8DwrE5YXap9MWCrTpBRKHpKjGNeD5EUhJuTlsQ_YLPsV7QJab3rfNtQ3NPpmWSOtEGykraM1hCVSCAgUrPW9f0O6gWbrwPTbIUnjqg3918en8xUG2rX1boMhHpMDB3XEk785Jc_XV0_z22Rxf3M3v1wkJlVCJRJydEpC5sBJa4QsFabDpmScoVLWCZNnAMwUiqvMKMcg42it5FhVVoKYkrPxbhfa1y3GXq_bbWiGlzotmMp5yjIxqPNRmdDGGNDpLvgNhJ3mTP-0pzujf9sbaDLSd1_j7l-nH-aj_wZ07HJL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609512043</pqid></control><display><type>article</type><title>Strength prediction in single beads of large area additive manufactured short‐fiber polymers</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Russell, Timothy ; Jack, David A.</creator><creatorcontrib>Russell, Timothy ; Jack, David A.</creatorcontrib><description>The use of fiber reinforcement in large area additive manufactured components is of industrial interest due to the ability to enhance the structural properties of final processed parts. This work presents a methodology to predict the tensile, compressive, and flexural yield strength of single beads of a large‐scale, 3D printed, short‐fiber reinforced material. The methodology is built on the strength theory of Van Hattum and Bernardo, which combines the Tsai‐Wu failure criteria with Advani and Tucker's orientation averaging technique, allowing fiber orientation flow model results to serve as direct input into strength predictions. Visual advantages of the methodology such as the ability to plot spatially varying strength constants and failure plots are demonstrated. In addition, an analysis of the methodology's sensitivity to various parameters is conducted.
Overview of 3D printing melt deposition modeling for internal fiber microstructure realignment resulting in the spatial variation of mechanical properties.</description><identifier>ISSN: 0272-8397</identifier><identifier>EISSN: 1548-0569</identifier><identifier>DOI: 10.1002/pc.26319</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>additive manufacturing ; Beads ; composites ; Compressive strength ; Failure analysis ; Fiber orientation ; Fiber reinforced materials ; Fiber reinforcement ; Finite Element Analysis (FEA) ; Methodology ; Parameter sensitivity ; strength ; structure–property relations ; Three dimensional printing</subject><ispartof>Polymer composites, 2021-12, Vol.42 (12), p.6534-6550</ispartof><rights>2021 Society of Plastics Engineers.</rights><rights>2021 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2939-7a5ef97a4faf7dc3789e22938010e99df3c54aa0c69194c9f0a41edd71ebbd7a3</citedby><cites>FETCH-LOGICAL-c2939-7a5ef97a4faf7dc3789e22938010e99df3c54aa0c69194c9f0a41edd71ebbd7a3</cites><orcidid>0000-0001-7199-0556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Russell, Timothy</creatorcontrib><creatorcontrib>Jack, David A.</creatorcontrib><title>Strength prediction in single beads of large area additive manufactured short‐fiber polymers</title><title>Polymer composites</title><description>The use of fiber reinforcement in large area additive manufactured components is of industrial interest due to the ability to enhance the structural properties of final processed parts. This work presents a methodology to predict the tensile, compressive, and flexural yield strength of single beads of a large‐scale, 3D printed, short‐fiber reinforced material. The methodology is built on the strength theory of Van Hattum and Bernardo, which combines the Tsai‐Wu failure criteria with Advani and Tucker's orientation averaging technique, allowing fiber orientation flow model results to serve as direct input into strength predictions. Visual advantages of the methodology such as the ability to plot spatially varying strength constants and failure plots are demonstrated. In addition, an analysis of the methodology's sensitivity to various parameters is conducted.
Overview of 3D printing melt deposition modeling for internal fiber microstructure realignment resulting in the spatial variation of mechanical properties.</description><subject>additive manufacturing</subject><subject>Beads</subject><subject>composites</subject><subject>Compressive strength</subject><subject>Failure analysis</subject><subject>Fiber orientation</subject><subject>Fiber reinforced materials</subject><subject>Fiber reinforcement</subject><subject>Finite Element Analysis (FEA)</subject><subject>Methodology</subject><subject>Parameter sensitivity</subject><subject>strength</subject><subject>structure–property relations</subject><subject>Three dimensional printing</subject><issn>0272-8397</issn><issn>1548-0569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10M9KxDAQBvAgCq6r4CMEvHjpmjRt0xxl8R8sKKhXwzSZ7GbptjXpKnvzEXxGn8RqvXqaw_y-GfgIOeVsxhlLLzozSwvB1R6Z8DwrE5YXap9MWCrTpBRKHpKjGNeD5EUhJuTlsQ_YLPsV7QJab3rfNtQ3NPpmWSOtEGykraM1hCVSCAgUrPW9f0O6gWbrwPTbIUnjqg3918en8xUG2rX1boMhHpMDB3XEk785Jc_XV0_z22Rxf3M3v1wkJlVCJRJydEpC5sBJa4QsFabDpmScoVLWCZNnAMwUiqvMKMcg42it5FhVVoKYkrPxbhfa1y3GXq_bbWiGlzotmMp5yjIxqPNRmdDGGNDpLvgNhJ3mTP-0pzujf9sbaDLSd1_j7l-nH-aj_wZ07HJL</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Russell, Timothy</creator><creator>Jack, David A.</creator><general>John Wiley & Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-7199-0556</orcidid></search><sort><creationdate>202112</creationdate><title>Strength prediction in single beads of large area additive manufactured short‐fiber polymers</title><author>Russell, Timothy ; Jack, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2939-7a5ef97a4faf7dc3789e22938010e99df3c54aa0c69194c9f0a41edd71ebbd7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>additive manufacturing</topic><topic>Beads</topic><topic>composites</topic><topic>Compressive strength</topic><topic>Failure analysis</topic><topic>Fiber orientation</topic><topic>Fiber reinforced materials</topic><topic>Fiber reinforcement</topic><topic>Finite Element Analysis (FEA)</topic><topic>Methodology</topic><topic>Parameter sensitivity</topic><topic>strength</topic><topic>structure–property relations</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Russell, Timothy</creatorcontrib><creatorcontrib>Jack, David A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Russell, Timothy</au><au>Jack, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strength prediction in single beads of large area additive manufactured short‐fiber polymers</atitle><jtitle>Polymer composites</jtitle><date>2021-12</date><risdate>2021</risdate><volume>42</volume><issue>12</issue><spage>6534</spage><epage>6550</epage><pages>6534-6550</pages><issn>0272-8397</issn><eissn>1548-0569</eissn><abstract>The use of fiber reinforcement in large area additive manufactured components is of industrial interest due to the ability to enhance the structural properties of final processed parts. This work presents a methodology to predict the tensile, compressive, and flexural yield strength of single beads of a large‐scale, 3D printed, short‐fiber reinforced material. The methodology is built on the strength theory of Van Hattum and Bernardo, which combines the Tsai‐Wu failure criteria with Advani and Tucker's orientation averaging technique, allowing fiber orientation flow model results to serve as direct input into strength predictions. Visual advantages of the methodology such as the ability to plot spatially varying strength constants and failure plots are demonstrated. In addition, an analysis of the methodology's sensitivity to various parameters is conducted.
Overview of 3D printing melt deposition modeling for internal fiber microstructure realignment resulting in the spatial variation of mechanical properties.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/pc.26319</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7199-0556</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-8397 |
ispartof | Polymer composites, 2021-12, Vol.42 (12), p.6534-6550 |
issn | 0272-8397 1548-0569 |
language | eng |
recordid | cdi_proquest_journals_2609512043 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | additive manufacturing Beads composites Compressive strength Failure analysis Fiber orientation Fiber reinforced materials Fiber reinforcement Finite Element Analysis (FEA) Methodology Parameter sensitivity strength structure–property relations Three dimensional printing |
title | Strength prediction in single beads of large area additive manufactured short‐fiber polymers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T10%3A16%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strength%20prediction%20in%20single%20beads%20of%20large%20area%20additive%20manufactured%20short%E2%80%90fiber%20polymers&rft.jtitle=Polymer%20composites&rft.au=Russell,%20Timothy&rft.date=2021-12&rft.volume=42&rft.issue=12&rft.spage=6534&rft.epage=6550&rft.pages=6534-6550&rft.issn=0272-8397&rft.eissn=1548-0569&rft_id=info:doi/10.1002/pc.26319&rft_dat=%3Cproquest_cross%3E2609512043%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2939-7a5ef97a4faf7dc3789e22938010e99df3c54aa0c69194c9f0a41edd71ebbd7a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2609512043&rft_id=info:pmid/&rfr_iscdi=true |