Loading…

Rhenium Nanoclusters as Modifiers of Immunosensors in the Determination of Tricyclic Antidepressants

The properties of hexarhenium chalcogenide nanoclusters (K 4 [{Re 6 S 8 }(OH) 6 ]·8H 2 O and K 4 [{Re 6 S 8 }(CN) 6 ]·8H 2 O) in combination with carbon nanomaterials (carbon nanotubes and graphene oxide) are studied by voltammetry, electrochemical impedance spectroscopy, atomic force microscopy, an...

Full description

Saved in:
Bibliographic Details
Published in:Journal of analytical chemistry (New York, N.Y.) N.Y.), 2021-12, Vol.76 (12), p.1455-1467
Main Authors: Medyantseva, E. P., Gazizullina, E. R., Brusnitsyn, D. V., Ziganshin, M. A., Elistratova, Yu. G., Mustafina, A. R., Brylev, K. A., Budnikov, H. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-ade043867bdfe84ceaa7a46ac0fbfaaa0bc01caa1f9cc437f974b051eadc4fd73
cites cdi_FETCH-LOGICAL-c455t-ade043867bdfe84ceaa7a46ac0fbfaaa0bc01caa1f9cc437f974b051eadc4fd73
container_end_page 1467
container_issue 12
container_start_page 1455
container_title Journal of analytical chemistry (New York, N.Y.)
container_volume 76
creator Medyantseva, E. P.
Gazizullina, E. R.
Brusnitsyn, D. V.
Ziganshin, M. A.
Elistratova, Yu. G.
Mustafina, A. R.
Brylev, K. A.
Budnikov, H. C.
description The properties of hexarhenium chalcogenide nanoclusters (K 4 [{Re 6 S 8 }(OH) 6 ]·8H 2 O and K 4 [{Re 6 S 8 }(CN) 6 ]·8H 2 O) in combination with carbon nanomaterials (carbon nanotubes and graphene oxide) are studied by voltammetry, electrochemical impedance spectroscopy, atomic force microscopy, and spectrophotometry and their screening is performed for use as hybrid modifiers of screen-printed graphite electrodes in immunosensors in order to improve analytical characteristics. The high negative charge of nanoclusters can be considered the driving force of the adsorption of clusters in the formation of electrodes modified by hybrid nanomaterials. It was found that hexarhenium chalcogenide nanoclusters possess electrochemical activity, which was first used to register immunochemical interactions. The change in the resistance of electron transfer made it possible to choose the best hybrid nanomaterials. The parameters of the surface roughness of the modified electrodes associated with the height properties of the irregularities were estimated. The use of hexarhenium chalcogenide nanoclusters in combination with carbon nanomaterials as hybrid nanomodifiers has made it possible to develop highly sensitive and selective amperometric and impedimetric immunosensors for the determination of tricyclic antidepressants (amitriptyline, desipramine, and imipramine) in pharmaceuticals and urine. The limit of quantification (LOQ) is at the level (4–7) × 10 –11 M. The relative standard deviation does not exceed 5%.
doi_str_mv 10.1134/S1061934821120078
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2609714695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A686704305</galeid><sourcerecordid>A686704305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-ade043867bdfe84ceaa7a46ac0fbfaaa0bc01caa1f9cc437f974b051eadc4fd73</originalsourceid><addsrcrecordid>eNp1kUtLAzEQgBdR8PkDvC148rCadNN9HIvPgg9o9Rym2UmN7CY1kwX992apIMVKDklmvm8mZJLklLMLznNxOees4HUuqhHnI8bKaic54AWrspzX9W48x3Q25PeTQ6J3xlhd8eIgaWZvaE3fpU9gnWp7CugpBUofXWO0GS5Op9Ou660jtORiwNg0vGF6jZHtjIVgnB2oF2_Ul2qNSic2mAZXHonABjpO9jS0hCc_-1HyenvzcnWfPTzfTa8mD5kS43HIoEEm8qooF43GSigEKEEUoJheaABgC8W4AuC6Vkrkpa5LsWBjjtAooZsyP0rO1nVX3n30SEG-u97b2FKOClaXXBT1-JdaQovSWO2CB9UZUnJSxO7xDWygsi3UEi16aJ1FbWJ4g7_YwsfVYGfUVuF8Q4hMwM-whJ5ITuezTZavWeUdkUctV9504L8kZ3KYv_wz_-iM1g5F1i7R_37G_9I3_mux7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609714695</pqid></control><display><type>article</type><title>Rhenium Nanoclusters as Modifiers of Immunosensors in the Determination of Tricyclic Antidepressants</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Medyantseva, E. P. ; Gazizullina, E. R. ; Brusnitsyn, D. V. ; Ziganshin, M. A. ; Elistratova, Yu. G. ; Mustafina, A. R. ; Brylev, K. A. ; Budnikov, H. C.</creator><creatorcontrib>Medyantseva, E. P. ; Gazizullina, E. R. ; Brusnitsyn, D. V. ; Ziganshin, M. A. ; Elistratova, Yu. G. ; Mustafina, A. R. ; Brylev, K. A. ; Budnikov, H. C.</creatorcontrib><description>The properties of hexarhenium chalcogenide nanoclusters (K 4 [{Re 6 S 8 }(OH) 6 ]·8H 2 O and K 4 [{Re 6 S 8 }(CN) 6 ]·8H 2 O) in combination with carbon nanomaterials (carbon nanotubes and graphene oxide) are studied by voltammetry, electrochemical impedance spectroscopy, atomic force microscopy, and spectrophotometry and their screening is performed for use as hybrid modifiers of screen-printed graphite electrodes in immunosensors in order to improve analytical characteristics. The high negative charge of nanoclusters can be considered the driving force of the adsorption of clusters in the formation of electrodes modified by hybrid nanomaterials. It was found that hexarhenium chalcogenide nanoclusters possess electrochemical activity, which was first used to register immunochemical interactions. The change in the resistance of electron transfer made it possible to choose the best hybrid nanomaterials. The parameters of the surface roughness of the modified electrodes associated with the height properties of the irregularities were estimated. The use of hexarhenium chalcogenide nanoclusters in combination with carbon nanomaterials as hybrid nanomodifiers has made it possible to develop highly sensitive and selective amperometric and impedimetric immunosensors for the determination of tricyclic antidepressants (amitriptyline, desipramine, and imipramine) in pharmaceuticals and urine. The limit of quantification (LOQ) is at the level (4–7) × 10 –11 M. The relative standard deviation does not exceed 5%.</description><identifier>ISSN: 1061-9348</identifier><identifier>EISSN: 1608-3199</identifier><identifier>DOI: 10.1134/S1061934821120078</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Adsorption ; Analytical Chemistry ; Antidepressants ; Antidepressants, Tricyclic ; Atomic force microscopy ; Carbon ; Carbon nanotubes ; Chalcogenides ; Chemistry ; Chemistry and Materials Science ; Electric properties ; Electrical measurement ; Electrochemical impedance spectroscopy ; Electrodes ; Electron transfer ; Graphene ; Graphite ; Immunosensors ; Nanoclusters ; Nanomaterials ; Nanotubes ; Parameter modification ; Rhenium ; Spectrophotometry ; Surface roughness</subject><ispartof>Journal of analytical chemistry (New York, N.Y.), 2021-12, Vol.76 (12), p.1455-1467</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 1061-9348, Journal of Analytical Chemistry, 2021, Vol. 76, No. 12, pp. 1455–1467. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Zhurnal Analiticheskoi Khimii, 2021, Vol. 76, No. 12, pp. 1123–1136.</rights><rights>COPYRIGHT 2021 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-ade043867bdfe84ceaa7a46ac0fbfaaa0bc01caa1f9cc437f974b051eadc4fd73</citedby><cites>FETCH-LOGICAL-c455t-ade043867bdfe84ceaa7a46ac0fbfaaa0bc01caa1f9cc437f974b051eadc4fd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Medyantseva, E. P.</creatorcontrib><creatorcontrib>Gazizullina, E. R.</creatorcontrib><creatorcontrib>Brusnitsyn, D. V.</creatorcontrib><creatorcontrib>Ziganshin, M. A.</creatorcontrib><creatorcontrib>Elistratova, Yu. G.</creatorcontrib><creatorcontrib>Mustafina, A. R.</creatorcontrib><creatorcontrib>Brylev, K. A.</creatorcontrib><creatorcontrib>Budnikov, H. C.</creatorcontrib><title>Rhenium Nanoclusters as Modifiers of Immunosensors in the Determination of Tricyclic Antidepressants</title><title>Journal of analytical chemistry (New York, N.Y.)</title><addtitle>J Anal Chem</addtitle><description>The properties of hexarhenium chalcogenide nanoclusters (K 4 [{Re 6 S 8 }(OH) 6 ]·8H 2 O and K 4 [{Re 6 S 8 }(CN) 6 ]·8H 2 O) in combination with carbon nanomaterials (carbon nanotubes and graphene oxide) are studied by voltammetry, electrochemical impedance spectroscopy, atomic force microscopy, and spectrophotometry and their screening is performed for use as hybrid modifiers of screen-printed graphite electrodes in immunosensors in order to improve analytical characteristics. The high negative charge of nanoclusters can be considered the driving force of the adsorption of clusters in the formation of electrodes modified by hybrid nanomaterials. It was found that hexarhenium chalcogenide nanoclusters possess electrochemical activity, which was first used to register immunochemical interactions. The change in the resistance of electron transfer made it possible to choose the best hybrid nanomaterials. The parameters of the surface roughness of the modified electrodes associated with the height properties of the irregularities were estimated. The use of hexarhenium chalcogenide nanoclusters in combination with carbon nanomaterials as hybrid nanomodifiers has made it possible to develop highly sensitive and selective amperometric and impedimetric immunosensors for the determination of tricyclic antidepressants (amitriptyline, desipramine, and imipramine) in pharmaceuticals and urine. The limit of quantification (LOQ) is at the level (4–7) × 10 –11 M. The relative standard deviation does not exceed 5%.</description><subject>Adsorption</subject><subject>Analytical Chemistry</subject><subject>Antidepressants</subject><subject>Antidepressants, Tricyclic</subject><subject>Atomic force microscopy</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Chalcogenides</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Electric properties</subject><subject>Electrical measurement</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrodes</subject><subject>Electron transfer</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Immunosensors</subject><subject>Nanoclusters</subject><subject>Nanomaterials</subject><subject>Nanotubes</subject><subject>Parameter modification</subject><subject>Rhenium</subject><subject>Spectrophotometry</subject><subject>Surface roughness</subject><issn>1061-9348</issn><issn>1608-3199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kUtLAzEQgBdR8PkDvC148rCadNN9HIvPgg9o9Rym2UmN7CY1kwX992apIMVKDklmvm8mZJLklLMLznNxOees4HUuqhHnI8bKaic54AWrspzX9W48x3Q25PeTQ6J3xlhd8eIgaWZvaE3fpU9gnWp7CugpBUofXWO0GS5Op9Ou660jtORiwNg0vGF6jZHtjIVgnB2oF2_Ul2qNSic2mAZXHonABjpO9jS0hCc_-1HyenvzcnWfPTzfTa8mD5kS43HIoEEm8qooF43GSigEKEEUoJheaABgC8W4AuC6Vkrkpa5LsWBjjtAooZsyP0rO1nVX3n30SEG-u97b2FKOClaXXBT1-JdaQovSWO2CB9UZUnJSxO7xDWygsi3UEi16aJ1FbWJ4g7_YwsfVYGfUVuF8Q4hMwM-whJ5ITuezTZavWeUdkUctV9504L8kZ3KYv_wz_-iM1g5F1i7R_37G_9I3_mux7Q</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Medyantseva, E. P.</creator><creator>Gazizullina, E. R.</creator><creator>Brusnitsyn, D. V.</creator><creator>Ziganshin, M. A.</creator><creator>Elistratova, Yu. G.</creator><creator>Mustafina, A. R.</creator><creator>Brylev, K. A.</creator><creator>Budnikov, H. C.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20211201</creationdate><title>Rhenium Nanoclusters as Modifiers of Immunosensors in the Determination of Tricyclic Antidepressants</title><author>Medyantseva, E. P. ; Gazizullina, E. R. ; Brusnitsyn, D. V. ; Ziganshin, M. A. ; Elistratova, Yu. G. ; Mustafina, A. R. ; Brylev, K. A. ; Budnikov, H. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-ade043867bdfe84ceaa7a46ac0fbfaaa0bc01caa1f9cc437f974b051eadc4fd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorption</topic><topic>Analytical Chemistry</topic><topic>Antidepressants</topic><topic>Antidepressants, Tricyclic</topic><topic>Atomic force microscopy</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Chalcogenides</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Electric properties</topic><topic>Electrical measurement</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrodes</topic><topic>Electron transfer</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Immunosensors</topic><topic>Nanoclusters</topic><topic>Nanomaterials</topic><topic>Nanotubes</topic><topic>Parameter modification</topic><topic>Rhenium</topic><topic>Spectrophotometry</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medyantseva, E. P.</creatorcontrib><creatorcontrib>Gazizullina, E. R.</creatorcontrib><creatorcontrib>Brusnitsyn, D. V.</creatorcontrib><creatorcontrib>Ziganshin, M. A.</creatorcontrib><creatorcontrib>Elistratova, Yu. G.</creatorcontrib><creatorcontrib>Mustafina, A. R.</creatorcontrib><creatorcontrib>Brylev, K. A.</creatorcontrib><creatorcontrib>Budnikov, H. C.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of analytical chemistry (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medyantseva, E. P.</au><au>Gazizullina, E. R.</au><au>Brusnitsyn, D. V.</au><au>Ziganshin, M. A.</au><au>Elistratova, Yu. G.</au><au>Mustafina, A. R.</au><au>Brylev, K. A.</au><au>Budnikov, H. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rhenium Nanoclusters as Modifiers of Immunosensors in the Determination of Tricyclic Antidepressants</atitle><jtitle>Journal of analytical chemistry (New York, N.Y.)</jtitle><stitle>J Anal Chem</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>76</volume><issue>12</issue><spage>1455</spage><epage>1467</epage><pages>1455-1467</pages><issn>1061-9348</issn><eissn>1608-3199</eissn><abstract>The properties of hexarhenium chalcogenide nanoclusters (K 4 [{Re 6 S 8 }(OH) 6 ]·8H 2 O and K 4 [{Re 6 S 8 }(CN) 6 ]·8H 2 O) in combination with carbon nanomaterials (carbon nanotubes and graphene oxide) are studied by voltammetry, electrochemical impedance spectroscopy, atomic force microscopy, and spectrophotometry and their screening is performed for use as hybrid modifiers of screen-printed graphite electrodes in immunosensors in order to improve analytical characteristics. The high negative charge of nanoclusters can be considered the driving force of the adsorption of clusters in the formation of electrodes modified by hybrid nanomaterials. It was found that hexarhenium chalcogenide nanoclusters possess electrochemical activity, which was first used to register immunochemical interactions. The change in the resistance of electron transfer made it possible to choose the best hybrid nanomaterials. The parameters of the surface roughness of the modified electrodes associated with the height properties of the irregularities were estimated. The use of hexarhenium chalcogenide nanoclusters in combination with carbon nanomaterials as hybrid nanomodifiers has made it possible to develop highly sensitive and selective amperometric and impedimetric immunosensors for the determination of tricyclic antidepressants (amitriptyline, desipramine, and imipramine) in pharmaceuticals and urine. The limit of quantification (LOQ) is at the level (4–7) × 10 –11 M. The relative standard deviation does not exceed 5%.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1061934821120078</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1061-9348
ispartof Journal of analytical chemistry (New York, N.Y.), 2021-12, Vol.76 (12), p.1455-1467
issn 1061-9348
1608-3199
language eng
recordid cdi_proquest_journals_2609714695
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Adsorption
Analytical Chemistry
Antidepressants
Antidepressants, Tricyclic
Atomic force microscopy
Carbon
Carbon nanotubes
Chalcogenides
Chemistry
Chemistry and Materials Science
Electric properties
Electrical measurement
Electrochemical impedance spectroscopy
Electrodes
Electron transfer
Graphene
Graphite
Immunosensors
Nanoclusters
Nanomaterials
Nanotubes
Parameter modification
Rhenium
Spectrophotometry
Surface roughness
title Rhenium Nanoclusters as Modifiers of Immunosensors in the Determination of Tricyclic Antidepressants
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A32%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rhenium%20Nanoclusters%20as%20Modifiers%20of%20Immunosensors%20in%20the%20Determination%20of%20Tricyclic%20Antidepressants&rft.jtitle=Journal%20of%20analytical%20chemistry%20(New%20York,%20N.Y.)&rft.au=Medyantseva,%20E.%20P.&rft.date=2021-12-01&rft.volume=76&rft.issue=12&rft.spage=1455&rft.epage=1467&rft.pages=1455-1467&rft.issn=1061-9348&rft.eissn=1608-3199&rft_id=info:doi/10.1134/S1061934821120078&rft_dat=%3Cgale_proqu%3EA686704305%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-ade043867bdfe84ceaa7a46ac0fbfaaa0bc01caa1f9cc437f974b051eadc4fd73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2609714695&rft_id=info:pmid/&rft_galeid=A686704305&rfr_iscdi=true