Loading…
Rhenium Nanoclusters as Modifiers of Immunosensors in the Determination of Tricyclic Antidepressants
The properties of hexarhenium chalcogenide nanoclusters (K 4 [{Re 6 S 8 }(OH) 6 ]·8H 2 O and K 4 [{Re 6 S 8 }(CN) 6 ]·8H 2 O) in combination with carbon nanomaterials (carbon nanotubes and graphene oxide) are studied by voltammetry, electrochemical impedance spectroscopy, atomic force microscopy, an...
Saved in:
Published in: | Journal of analytical chemistry (New York, N.Y.) N.Y.), 2021-12, Vol.76 (12), p.1455-1467 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c455t-ade043867bdfe84ceaa7a46ac0fbfaaa0bc01caa1f9cc437f974b051eadc4fd73 |
---|---|
cites | cdi_FETCH-LOGICAL-c455t-ade043867bdfe84ceaa7a46ac0fbfaaa0bc01caa1f9cc437f974b051eadc4fd73 |
container_end_page | 1467 |
container_issue | 12 |
container_start_page | 1455 |
container_title | Journal of analytical chemistry (New York, N.Y.) |
container_volume | 76 |
creator | Medyantseva, E. P. Gazizullina, E. R. Brusnitsyn, D. V. Ziganshin, M. A. Elistratova, Yu. G. Mustafina, A. R. Brylev, K. A. Budnikov, H. C. |
description | The properties of hexarhenium chalcogenide nanoclusters (K
4
[{Re
6
S
8
}(OH)
6
]·8H
2
O and K
4
[{Re
6
S
8
}(CN)
6
]·8H
2
O) in combination with carbon nanomaterials (carbon nanotubes and graphene oxide) are studied by voltammetry, electrochemical impedance spectroscopy, atomic force microscopy, and spectrophotometry and their screening is performed for use as hybrid modifiers of screen-printed graphite electrodes in immunosensors in order to improve analytical characteristics. The high negative charge of nanoclusters can be considered the driving force of the adsorption of clusters in the formation of electrodes modified by hybrid nanomaterials. It was found that hexarhenium chalcogenide nanoclusters possess electrochemical activity, which was first used to register immunochemical interactions. The change in the resistance of electron transfer made it possible to choose the best hybrid nanomaterials. The parameters of the surface roughness of the modified electrodes associated with the height properties of the irregularities were estimated. The use of hexarhenium chalcogenide nanoclusters in combination with carbon nanomaterials as hybrid nanomodifiers has made it possible to develop highly sensitive and selective amperometric and impedimetric immunosensors for the determination of tricyclic antidepressants (amitriptyline, desipramine, and imipramine) in pharmaceuticals and urine. The limit of quantification (LOQ) is at the level (4–7) × 10
–11
M. The relative standard deviation does not exceed 5%. |
doi_str_mv | 10.1134/S1061934821120078 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2609714695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A686704305</galeid><sourcerecordid>A686704305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-ade043867bdfe84ceaa7a46ac0fbfaaa0bc01caa1f9cc437f974b051eadc4fd73</originalsourceid><addsrcrecordid>eNp1kUtLAzEQgBdR8PkDvC148rCadNN9HIvPgg9o9Rym2UmN7CY1kwX992apIMVKDklmvm8mZJLklLMLznNxOees4HUuqhHnI8bKaic54AWrspzX9W48x3Q25PeTQ6J3xlhd8eIgaWZvaE3fpU9gnWp7CugpBUofXWO0GS5Op9Ou660jtORiwNg0vGF6jZHtjIVgnB2oF2_Ul2qNSic2mAZXHonABjpO9jS0hCc_-1HyenvzcnWfPTzfTa8mD5kS43HIoEEm8qooF43GSigEKEEUoJheaABgC8W4AuC6Vkrkpa5LsWBjjtAooZsyP0rO1nVX3n30SEG-u97b2FKOClaXXBT1-JdaQovSWO2CB9UZUnJSxO7xDWygsi3UEi16aJ1FbWJ4g7_YwsfVYGfUVuF8Q4hMwM-whJ5ITuezTZavWeUdkUctV9504L8kZ3KYv_wz_-iM1g5F1i7R_37G_9I3_mux7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609714695</pqid></control><display><type>article</type><title>Rhenium Nanoclusters as Modifiers of Immunosensors in the Determination of Tricyclic Antidepressants</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Medyantseva, E. P. ; Gazizullina, E. R. ; Brusnitsyn, D. V. ; Ziganshin, M. A. ; Elistratova, Yu. G. ; Mustafina, A. R. ; Brylev, K. A. ; Budnikov, H. C.</creator><creatorcontrib>Medyantseva, E. P. ; Gazizullina, E. R. ; Brusnitsyn, D. V. ; Ziganshin, M. A. ; Elistratova, Yu. G. ; Mustafina, A. R. ; Brylev, K. A. ; Budnikov, H. C.</creatorcontrib><description>The properties of hexarhenium chalcogenide nanoclusters (K
4
[{Re
6
S
8
}(OH)
6
]·8H
2
O and K
4
[{Re
6
S
8
}(CN)
6
]·8H
2
O) in combination with carbon nanomaterials (carbon nanotubes and graphene oxide) are studied by voltammetry, electrochemical impedance spectroscopy, atomic force microscopy, and spectrophotometry and their screening is performed for use as hybrid modifiers of screen-printed graphite electrodes in immunosensors in order to improve analytical characteristics. The high negative charge of nanoclusters can be considered the driving force of the adsorption of clusters in the formation of electrodes modified by hybrid nanomaterials. It was found that hexarhenium chalcogenide nanoclusters possess electrochemical activity, which was first used to register immunochemical interactions. The change in the resistance of electron transfer made it possible to choose the best hybrid nanomaterials. The parameters of the surface roughness of the modified electrodes associated with the height properties of the irregularities were estimated. The use of hexarhenium chalcogenide nanoclusters in combination with carbon nanomaterials as hybrid nanomodifiers has made it possible to develop highly sensitive and selective amperometric and impedimetric immunosensors for the determination of tricyclic antidepressants (amitriptyline, desipramine, and imipramine) in pharmaceuticals and urine. The limit of quantification (LOQ) is at the level (4–7) × 10
–11
M. The relative standard deviation does not exceed 5%.</description><identifier>ISSN: 1061-9348</identifier><identifier>EISSN: 1608-3199</identifier><identifier>DOI: 10.1134/S1061934821120078</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Adsorption ; Analytical Chemistry ; Antidepressants ; Antidepressants, Tricyclic ; Atomic force microscopy ; Carbon ; Carbon nanotubes ; Chalcogenides ; Chemistry ; Chemistry and Materials Science ; Electric properties ; Electrical measurement ; Electrochemical impedance spectroscopy ; Electrodes ; Electron transfer ; Graphene ; Graphite ; Immunosensors ; Nanoclusters ; Nanomaterials ; Nanotubes ; Parameter modification ; Rhenium ; Spectrophotometry ; Surface roughness</subject><ispartof>Journal of analytical chemistry (New York, N.Y.), 2021-12, Vol.76 (12), p.1455-1467</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 1061-9348, Journal of Analytical Chemistry, 2021, Vol. 76, No. 12, pp. 1455–1467. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Zhurnal Analiticheskoi Khimii, 2021, Vol. 76, No. 12, pp. 1123–1136.</rights><rights>COPYRIGHT 2021 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-ade043867bdfe84ceaa7a46ac0fbfaaa0bc01caa1f9cc437f974b051eadc4fd73</citedby><cites>FETCH-LOGICAL-c455t-ade043867bdfe84ceaa7a46ac0fbfaaa0bc01caa1f9cc437f974b051eadc4fd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Medyantseva, E. P.</creatorcontrib><creatorcontrib>Gazizullina, E. R.</creatorcontrib><creatorcontrib>Brusnitsyn, D. V.</creatorcontrib><creatorcontrib>Ziganshin, M. A.</creatorcontrib><creatorcontrib>Elistratova, Yu. G.</creatorcontrib><creatorcontrib>Mustafina, A. R.</creatorcontrib><creatorcontrib>Brylev, K. A.</creatorcontrib><creatorcontrib>Budnikov, H. C.</creatorcontrib><title>Rhenium Nanoclusters as Modifiers of Immunosensors in the Determination of Tricyclic Antidepressants</title><title>Journal of analytical chemistry (New York, N.Y.)</title><addtitle>J Anal Chem</addtitle><description>The properties of hexarhenium chalcogenide nanoclusters (K
4
[{Re
6
S
8
}(OH)
6
]·8H
2
O and K
4
[{Re
6
S
8
}(CN)
6
]·8H
2
O) in combination with carbon nanomaterials (carbon nanotubes and graphene oxide) are studied by voltammetry, electrochemical impedance spectroscopy, atomic force microscopy, and spectrophotometry and their screening is performed for use as hybrid modifiers of screen-printed graphite electrodes in immunosensors in order to improve analytical characteristics. The high negative charge of nanoclusters can be considered the driving force of the adsorption of clusters in the formation of electrodes modified by hybrid nanomaterials. It was found that hexarhenium chalcogenide nanoclusters possess electrochemical activity, which was first used to register immunochemical interactions. The change in the resistance of electron transfer made it possible to choose the best hybrid nanomaterials. The parameters of the surface roughness of the modified electrodes associated with the height properties of the irregularities were estimated. The use of hexarhenium chalcogenide nanoclusters in combination with carbon nanomaterials as hybrid nanomodifiers has made it possible to develop highly sensitive and selective amperometric and impedimetric immunosensors for the determination of tricyclic antidepressants (amitriptyline, desipramine, and imipramine) in pharmaceuticals and urine. The limit of quantification (LOQ) is at the level (4–7) × 10
–11
M. The relative standard deviation does not exceed 5%.</description><subject>Adsorption</subject><subject>Analytical Chemistry</subject><subject>Antidepressants</subject><subject>Antidepressants, Tricyclic</subject><subject>Atomic force microscopy</subject><subject>Carbon</subject><subject>Carbon nanotubes</subject><subject>Chalcogenides</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Electric properties</subject><subject>Electrical measurement</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrodes</subject><subject>Electron transfer</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Immunosensors</subject><subject>Nanoclusters</subject><subject>Nanomaterials</subject><subject>Nanotubes</subject><subject>Parameter modification</subject><subject>Rhenium</subject><subject>Spectrophotometry</subject><subject>Surface roughness</subject><issn>1061-9348</issn><issn>1608-3199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kUtLAzEQgBdR8PkDvC148rCadNN9HIvPgg9o9Rym2UmN7CY1kwX992apIMVKDklmvm8mZJLklLMLznNxOees4HUuqhHnI8bKaic54AWrspzX9W48x3Q25PeTQ6J3xlhd8eIgaWZvaE3fpU9gnWp7CugpBUofXWO0GS5Op9Ou660jtORiwNg0vGF6jZHtjIVgnB2oF2_Ul2qNSic2mAZXHonABjpO9jS0hCc_-1HyenvzcnWfPTzfTa8mD5kS43HIoEEm8qooF43GSigEKEEUoJheaABgC8W4AuC6Vkrkpa5LsWBjjtAooZsyP0rO1nVX3n30SEG-u97b2FKOClaXXBT1-JdaQovSWO2CB9UZUnJSxO7xDWygsi3UEi16aJ1FbWJ4g7_YwsfVYGfUVuF8Q4hMwM-whJ5ITuezTZavWeUdkUctV9504L8kZ3KYv_wz_-iM1g5F1i7R_37G_9I3_mux7Q</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Medyantseva, E. P.</creator><creator>Gazizullina, E. R.</creator><creator>Brusnitsyn, D. V.</creator><creator>Ziganshin, M. A.</creator><creator>Elistratova, Yu. G.</creator><creator>Mustafina, A. R.</creator><creator>Brylev, K. A.</creator><creator>Budnikov, H. C.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20211201</creationdate><title>Rhenium Nanoclusters as Modifiers of Immunosensors in the Determination of Tricyclic Antidepressants</title><author>Medyantseva, E. P. ; Gazizullina, E. R. ; Brusnitsyn, D. V. ; Ziganshin, M. A. ; Elistratova, Yu. G. ; Mustafina, A. R. ; Brylev, K. A. ; Budnikov, H. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-ade043867bdfe84ceaa7a46ac0fbfaaa0bc01caa1f9cc437f974b051eadc4fd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adsorption</topic><topic>Analytical Chemistry</topic><topic>Antidepressants</topic><topic>Antidepressants, Tricyclic</topic><topic>Atomic force microscopy</topic><topic>Carbon</topic><topic>Carbon nanotubes</topic><topic>Chalcogenides</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Electric properties</topic><topic>Electrical measurement</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrodes</topic><topic>Electron transfer</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Immunosensors</topic><topic>Nanoclusters</topic><topic>Nanomaterials</topic><topic>Nanotubes</topic><topic>Parameter modification</topic><topic>Rhenium</topic><topic>Spectrophotometry</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medyantseva, E. P.</creatorcontrib><creatorcontrib>Gazizullina, E. R.</creatorcontrib><creatorcontrib>Brusnitsyn, D. V.</creatorcontrib><creatorcontrib>Ziganshin, M. A.</creatorcontrib><creatorcontrib>Elistratova, Yu. G.</creatorcontrib><creatorcontrib>Mustafina, A. R.</creatorcontrib><creatorcontrib>Brylev, K. A.</creatorcontrib><creatorcontrib>Budnikov, H. C.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of analytical chemistry (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medyantseva, E. P.</au><au>Gazizullina, E. R.</au><au>Brusnitsyn, D. V.</au><au>Ziganshin, M. A.</au><au>Elistratova, Yu. G.</au><au>Mustafina, A. R.</au><au>Brylev, K. A.</au><au>Budnikov, H. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rhenium Nanoclusters as Modifiers of Immunosensors in the Determination of Tricyclic Antidepressants</atitle><jtitle>Journal of analytical chemistry (New York, N.Y.)</jtitle><stitle>J Anal Chem</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>76</volume><issue>12</issue><spage>1455</spage><epage>1467</epage><pages>1455-1467</pages><issn>1061-9348</issn><eissn>1608-3199</eissn><abstract>The properties of hexarhenium chalcogenide nanoclusters (K
4
[{Re
6
S
8
}(OH)
6
]·8H
2
O and K
4
[{Re
6
S
8
}(CN)
6
]·8H
2
O) in combination with carbon nanomaterials (carbon nanotubes and graphene oxide) are studied by voltammetry, electrochemical impedance spectroscopy, atomic force microscopy, and spectrophotometry and their screening is performed for use as hybrid modifiers of screen-printed graphite electrodes in immunosensors in order to improve analytical characteristics. The high negative charge of nanoclusters can be considered the driving force of the adsorption of clusters in the formation of electrodes modified by hybrid nanomaterials. It was found that hexarhenium chalcogenide nanoclusters possess electrochemical activity, which was first used to register immunochemical interactions. The change in the resistance of electron transfer made it possible to choose the best hybrid nanomaterials. The parameters of the surface roughness of the modified electrodes associated with the height properties of the irregularities were estimated. The use of hexarhenium chalcogenide nanoclusters in combination with carbon nanomaterials as hybrid nanomodifiers has made it possible to develop highly sensitive and selective amperometric and impedimetric immunosensors for the determination of tricyclic antidepressants (amitriptyline, desipramine, and imipramine) in pharmaceuticals and urine. The limit of quantification (LOQ) is at the level (4–7) × 10
–11
M. The relative standard deviation does not exceed 5%.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1061934821120078</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-9348 |
ispartof | Journal of analytical chemistry (New York, N.Y.), 2021-12, Vol.76 (12), p.1455-1467 |
issn | 1061-9348 1608-3199 |
language | eng |
recordid | cdi_proquest_journals_2609714695 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Adsorption Analytical Chemistry Antidepressants Antidepressants, Tricyclic Atomic force microscopy Carbon Carbon nanotubes Chalcogenides Chemistry Chemistry and Materials Science Electric properties Electrical measurement Electrochemical impedance spectroscopy Electrodes Electron transfer Graphene Graphite Immunosensors Nanoclusters Nanomaterials Nanotubes Parameter modification Rhenium Spectrophotometry Surface roughness |
title | Rhenium Nanoclusters as Modifiers of Immunosensors in the Determination of Tricyclic Antidepressants |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A32%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rhenium%20Nanoclusters%20as%20Modifiers%20of%20Immunosensors%20in%20the%20Determination%20of%20Tricyclic%20Antidepressants&rft.jtitle=Journal%20of%20analytical%20chemistry%20(New%20York,%20N.Y.)&rft.au=Medyantseva,%20E.%20P.&rft.date=2021-12-01&rft.volume=76&rft.issue=12&rft.spage=1455&rft.epage=1467&rft.pages=1455-1467&rft.issn=1061-9348&rft.eissn=1608-3199&rft_id=info:doi/10.1134/S1061934821120078&rft_dat=%3Cgale_proqu%3EA686704305%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-ade043867bdfe84ceaa7a46ac0fbfaaa0bc01caa1f9cc437f974b051eadc4fd73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2609714695&rft_id=info:pmid/&rft_galeid=A686704305&rfr_iscdi=true |