Loading…

Eta Carinae: A Tale of Two Periastron Passages

Since 2002, the far-ultraviolet(FUV)flux(1150–1680Å)of Eta Carinae, monitored by the Hubble SpaceTelescope/Space Telescope Imaging Spectrograph, has increased by an order of magnitude. This increase isattributed to partial dissipation of a line-of-sight(LOS)occulter that blocks the central core of t...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2021-12, Vol.923 (1), p.102
Main Authors: Gull, Theodore R., Navarete, Felipe, Corcoran, Michael F., Damineli, Augusto, Espinoza, David, Hamaguchi, Kenji, Hartman, Henrik, Hillier, D. John, Madura, Thomas, Moffat, Anthony F. J., Morris, Patrick, Nielsen, Krister, Pittard, Julian M., Pollock, Andrew M. T., Richardson, Noel D., Russell, Christopher M. P., Stevens, Ian R., Weigelt, Gerd
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-96d118b13fc37598dafeb48eca8da414567094efd04df18d72c96c63c576efa13
cites cdi_FETCH-LOGICAL-c438t-96d118b13fc37598dafeb48eca8da414567094efd04df18d72c96c63c576efa13
container_end_page
container_issue 1
container_start_page 102
container_title The Astrophysical journal
container_volume 923
creator Gull, Theodore R.
Navarete, Felipe
Corcoran, Michael F.
Damineli, Augusto
Espinoza, David
Hamaguchi, Kenji
Hartman, Henrik
Hillier, D. John
Madura, Thomas
Moffat, Anthony F. J.
Morris, Patrick
Nielsen, Krister
Pittard, Julian M.
Pollock, Andrew M. T.
Richardson, Noel D.
Russell, Christopher M. P.
Stevens, Ian R.
Weigelt, Gerd
description Since 2002, the far-ultraviolet(FUV)flux(1150–1680Å)of Eta Carinae, monitored by the Hubble SpaceTelescope/Space Telescope Imaging Spectrograph, has increased by an order of magnitude. This increase isattributed to partial dissipation of a line-of-sight(LOS)occulter that blocks the central core of the system. Acrossthe 2020 February periastron passage, changes in the FUV emission show a stronger wavelength dependence thanoccurred across the 2003 July periastron passage. Across both periastron passages, most of the FUV spectrumdropped influx then recovered a few months later. The 2020 periastron passage included enhancements of FUVflux in narrow spectral intervals near periastron followed by a transient absorption and recovery to pre-periastronflux levels. The drop influx is due to increased absorption by singly ionized species as the secondary star plungesdeep into the wind of the primary star, which blocks the companion’s ionizing radiation. The enhanced FUVemission is caused by the companion’s wind-blown cavity briefly opening a window to deeper layers of theprimary star. This is thefirst time transient brightening has been seen in the FUV comparable to transientspreviously seen at longer wavelengths. Changes in resonance line-velocity profiles hint that the dissipating occulteris associated with material in LOS moving at−100 to−300 km s−1, similar in velocity of structures previouslyassociated with the 1890s lesser eruption.
doi_str_mv 10.3847/1538-4357/ac22a6
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2609728778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2609728778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-96d118b13fc37598dafeb48eca8da414567094efd04df18d72c96c63c576efa13</originalsourceid><addsrcrecordid>eNp1kEtLAzEURoMoWKt7Fy4GxJ3T5jWTxF2p9QEFu6jiLtzOJGVKOxmTKcV_b8pIiwtXedxzv5schK4JHjDJxZBkTKacZWIIBaWQn6De4eoU9TDGPM2Z-DxHFyGs9keqVA8NJi0kY_BVDeYhGSVzWJvE2WS-c8nM-ApC612dzCAEWJpwic4srIO5-l376P1pMh-_pNO359fxaJoWnMk2VXlJiFwQZgsmMiVLsGbBpSkgbjnhWS6w4saWmJeWyFLQQuVFzopM5MYCYX103-WGnWm2C934agP-Wzuo9GP1MdLOL_UGtpqLDPOI33Z4493X1oRWr9zW1_GFmuZYCSqFkJHCHVV4F4I39hBLsN5L1Htjem9MdxJjy03XUkMAXbc-BmJKo76MKRzLd125cs1xJDQrrSjTJOZS3ZT2-J0_3L9TfwD5KYXz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609728778</pqid></control><display><type>article</type><title>Eta Carinae: A Tale of Two Periastron Passages</title><source>EZB Electronic Journals Library</source><creator>Gull, Theodore R. ; Navarete, Felipe ; Corcoran, Michael F. ; Damineli, Augusto ; Espinoza, David ; Hamaguchi, Kenji ; Hartman, Henrik ; Hillier, D. John ; Madura, Thomas ; Moffat, Anthony F. J. ; Morris, Patrick ; Nielsen, Krister ; Pittard, Julian M. ; Pollock, Andrew M. T. ; Richardson, Noel D. ; Russell, Christopher M. P. ; Stevens, Ian R. ; Weigelt, Gerd</creator><creatorcontrib>Gull, Theodore R. ; Navarete, Felipe ; Corcoran, Michael F. ; Damineli, Augusto ; Espinoza, David ; Hamaguchi, Kenji ; Hartman, Henrik ; Hillier, D. John ; Madura, Thomas ; Moffat, Anthony F. J. ; Morris, Patrick ; Nielsen, Krister ; Pittard, Julian M. ; Pollock, Andrew M. T. ; Richardson, Noel D. ; Russell, Christopher M. P. ; Stevens, Ian R. ; Weigelt, Gerd</creatorcontrib><description>Since 2002, the far-ultraviolet(FUV)flux(1150–1680Å)of Eta Carinae, monitored by the Hubble SpaceTelescope/Space Telescope Imaging Spectrograph, has increased by an order of magnitude. This increase isattributed to partial dissipation of a line-of-sight(LOS)occulter that blocks the central core of the system. Acrossthe 2020 February periastron passage, changes in the FUV emission show a stronger wavelength dependence thanoccurred across the 2003 July periastron passage. Across both periastron passages, most of the FUV spectrumdropped influx then recovered a few months later. The 2020 periastron passage included enhancements of FUVflux in narrow spectral intervals near periastron followed by a transient absorption and recovery to pre-periastronflux levels. The drop influx is due to increased absorption by singly ionized species as the secondary star plungesdeep into the wind of the primary star, which blocks the companion’s ionizing radiation. The enhanced FUVemission is caused by the companion’s wind-blown cavity briefly opening a window to deeper layers of theprimary star. This is thefirst time transient brightening has been seen in the FUV comparable to transientspreviously seen at longer wavelengths. Changes in resonance line-velocity profiles hint that the dissipating occulteris associated with material in LOS moving at−100 to−300 km s−1, similar in velocity of structures previouslyassociated with the 1890s lesser eruption.</description><identifier>ISSN: 0004-637X</identifier><identifier>ISSN: 1538-4357</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac22a6</identifier><language>eng</language><publisher>Goddard Space Flight Center: The American Astronomical Society</publisher><subject>Absorption ; Astronomy ; Astronomy and Astrophysics ; Astrophysics ; Binary stars ; Brightening ; Emission ; Fluctuations ; Hubble Space Telescope ; Ionizing radiation ; Line of sight ; Massive stars ; Resonance lines ; Space and Planetary Science ; Space telescopes ; Stellar winds ; Velocity ; Velocity distribution ; Wavelengths ; Wind</subject><ispartof>The Astrophysical journal, 2021-12, Vol.923 (1), p.102</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL</rights><rights>Copyright IOP Publishing Dec 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-96d118b13fc37598dafeb48eca8da414567094efd04df18d72c96c63c576efa13</citedby><cites>FETCH-LOGICAL-c438t-96d118b13fc37598dafeb48eca8da414567094efd04df18d72c96c63c576efa13</cites><orcidid>0000-0002-6851-5380 ; 0000-0001-9853-2555 ; 0000-0003-2244-5070 ; 0000-0002-0284-0578 ; 0000-0002-7762-3172 ; 0000-0002-5725-7072 ; 0000-0002-4333-9755 ; 0000-0001-7673-4340 ; 0000-0001-7515-2779 ; 0000-0002-7978-2994 ; 0000-0003-2636-7663 ; 0000-0002-2806-9339 ; 0000-0002-5186-4381 ; 0000-0001-9754-2233 ; 0000-0002-9213-0763 ; 0000-0001-5094-8017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-47504$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Gull, Theodore R.</creatorcontrib><creatorcontrib>Navarete, Felipe</creatorcontrib><creatorcontrib>Corcoran, Michael F.</creatorcontrib><creatorcontrib>Damineli, Augusto</creatorcontrib><creatorcontrib>Espinoza, David</creatorcontrib><creatorcontrib>Hamaguchi, Kenji</creatorcontrib><creatorcontrib>Hartman, Henrik</creatorcontrib><creatorcontrib>Hillier, D. John</creatorcontrib><creatorcontrib>Madura, Thomas</creatorcontrib><creatorcontrib>Moffat, Anthony F. J.</creatorcontrib><creatorcontrib>Morris, Patrick</creatorcontrib><creatorcontrib>Nielsen, Krister</creatorcontrib><creatorcontrib>Pittard, Julian M.</creatorcontrib><creatorcontrib>Pollock, Andrew M. T.</creatorcontrib><creatorcontrib>Richardson, Noel D.</creatorcontrib><creatorcontrib>Russell, Christopher M. P.</creatorcontrib><creatorcontrib>Stevens, Ian R.</creatorcontrib><creatorcontrib>Weigelt, Gerd</creatorcontrib><title>Eta Carinae: A Tale of Two Periastron Passages</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Since 2002, the far-ultraviolet(FUV)flux(1150–1680Å)of Eta Carinae, monitored by the Hubble SpaceTelescope/Space Telescope Imaging Spectrograph, has increased by an order of magnitude. This increase isattributed to partial dissipation of a line-of-sight(LOS)occulter that blocks the central core of the system. Acrossthe 2020 February periastron passage, changes in the FUV emission show a stronger wavelength dependence thanoccurred across the 2003 July periastron passage. Across both periastron passages, most of the FUV spectrumdropped influx then recovered a few months later. The 2020 periastron passage included enhancements of FUVflux in narrow spectral intervals near periastron followed by a transient absorption and recovery to pre-periastronflux levels. The drop influx is due to increased absorption by singly ionized species as the secondary star plungesdeep into the wind of the primary star, which blocks the companion’s ionizing radiation. The enhanced FUVemission is caused by the companion’s wind-blown cavity briefly opening a window to deeper layers of theprimary star. This is thefirst time transient brightening has been seen in the FUV comparable to transientspreviously seen at longer wavelengths. Changes in resonance line-velocity profiles hint that the dissipating occulteris associated with material in LOS moving at−100 to−300 km s−1, similar in velocity of structures previouslyassociated with the 1890s lesser eruption.</description><subject>Absorption</subject><subject>Astronomy</subject><subject>Astronomy and Astrophysics</subject><subject>Astrophysics</subject><subject>Binary stars</subject><subject>Brightening</subject><subject>Emission</subject><subject>Fluctuations</subject><subject>Hubble Space Telescope</subject><subject>Ionizing radiation</subject><subject>Line of sight</subject><subject>Massive stars</subject><subject>Resonance lines</subject><subject>Space and Planetary Science</subject><subject>Space telescopes</subject><subject>Stellar winds</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Wavelengths</subject><subject>Wind</subject><issn>0004-637X</issn><issn>1538-4357</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEURoMoWKt7Fy4GxJ3T5jWTxF2p9QEFu6jiLtzOJGVKOxmTKcV_b8pIiwtXedxzv5schK4JHjDJxZBkTKacZWIIBaWQn6De4eoU9TDGPM2Z-DxHFyGs9keqVA8NJi0kY_BVDeYhGSVzWJvE2WS-c8nM-ApC612dzCAEWJpwic4srIO5-l376P1pMh-_pNO359fxaJoWnMk2VXlJiFwQZgsmMiVLsGbBpSkgbjnhWS6w4saWmJeWyFLQQuVFzopM5MYCYX103-WGnWm2C934agP-Wzuo9GP1MdLOL_UGtpqLDPOI33Z4493X1oRWr9zW1_GFmuZYCSqFkJHCHVV4F4I39hBLsN5L1Htjem9MdxJjy03XUkMAXbc-BmJKo76MKRzLd125cs1xJDQrrSjTJOZS3ZT2-J0_3L9TfwD5KYXz</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Gull, Theodore R.</creator><creator>Navarete, Felipe</creator><creator>Corcoran, Michael F.</creator><creator>Damineli, Augusto</creator><creator>Espinoza, David</creator><creator>Hamaguchi, Kenji</creator><creator>Hartman, Henrik</creator><creator>Hillier, D. John</creator><creator>Madura, Thomas</creator><creator>Moffat, Anthony F. J.</creator><creator>Morris, Patrick</creator><creator>Nielsen, Krister</creator><creator>Pittard, Julian M.</creator><creator>Pollock, Andrew M. T.</creator><creator>Richardson, Noel D.</creator><creator>Russell, Christopher M. P.</creator><creator>Stevens, Ian R.</creator><creator>Weigelt, Gerd</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-6851-5380</orcidid><orcidid>https://orcid.org/0000-0001-9853-2555</orcidid><orcidid>https://orcid.org/0000-0003-2244-5070</orcidid><orcidid>https://orcid.org/0000-0002-0284-0578</orcidid><orcidid>https://orcid.org/0000-0002-7762-3172</orcidid><orcidid>https://orcid.org/0000-0002-5725-7072</orcidid><orcidid>https://orcid.org/0000-0002-4333-9755</orcidid><orcidid>https://orcid.org/0000-0001-7673-4340</orcidid><orcidid>https://orcid.org/0000-0001-7515-2779</orcidid><orcidid>https://orcid.org/0000-0002-7978-2994</orcidid><orcidid>https://orcid.org/0000-0003-2636-7663</orcidid><orcidid>https://orcid.org/0000-0002-2806-9339</orcidid><orcidid>https://orcid.org/0000-0002-5186-4381</orcidid><orcidid>https://orcid.org/0000-0001-9754-2233</orcidid><orcidid>https://orcid.org/0000-0002-9213-0763</orcidid><orcidid>https://orcid.org/0000-0001-5094-8017</orcidid></search><sort><creationdate>20211201</creationdate><title>Eta Carinae: A Tale of Two Periastron Passages</title><author>Gull, Theodore R. ; Navarete, Felipe ; Corcoran, Michael F. ; Damineli, Augusto ; Espinoza, David ; Hamaguchi, Kenji ; Hartman, Henrik ; Hillier, D. John ; Madura, Thomas ; Moffat, Anthony F. J. ; Morris, Patrick ; Nielsen, Krister ; Pittard, Julian M. ; Pollock, Andrew M. T. ; Richardson, Noel D. ; Russell, Christopher M. P. ; Stevens, Ian R. ; Weigelt, Gerd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-96d118b13fc37598dafeb48eca8da414567094efd04df18d72c96c63c576efa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption</topic><topic>Astronomy</topic><topic>Astronomy and Astrophysics</topic><topic>Astrophysics</topic><topic>Binary stars</topic><topic>Brightening</topic><topic>Emission</topic><topic>Fluctuations</topic><topic>Hubble Space Telescope</topic><topic>Ionizing radiation</topic><topic>Line of sight</topic><topic>Massive stars</topic><topic>Resonance lines</topic><topic>Space and Planetary Science</topic><topic>Space telescopes</topic><topic>Stellar winds</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Wavelengths</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gull, Theodore R.</creatorcontrib><creatorcontrib>Navarete, Felipe</creatorcontrib><creatorcontrib>Corcoran, Michael F.</creatorcontrib><creatorcontrib>Damineli, Augusto</creatorcontrib><creatorcontrib>Espinoza, David</creatorcontrib><creatorcontrib>Hamaguchi, Kenji</creatorcontrib><creatorcontrib>Hartman, Henrik</creatorcontrib><creatorcontrib>Hillier, D. John</creatorcontrib><creatorcontrib>Madura, Thomas</creatorcontrib><creatorcontrib>Moffat, Anthony F. J.</creatorcontrib><creatorcontrib>Morris, Patrick</creatorcontrib><creatorcontrib>Nielsen, Krister</creatorcontrib><creatorcontrib>Pittard, Julian M.</creatorcontrib><creatorcontrib>Pollock, Andrew M. T.</creatorcontrib><creatorcontrib>Richardson, Noel D.</creatorcontrib><creatorcontrib>Russell, Christopher M. P.</creatorcontrib><creatorcontrib>Stevens, Ian R.</creatorcontrib><creatorcontrib>Weigelt, Gerd</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gull, Theodore R.</au><au>Navarete, Felipe</au><au>Corcoran, Michael F.</au><au>Damineli, Augusto</au><au>Espinoza, David</au><au>Hamaguchi, Kenji</au><au>Hartman, Henrik</au><au>Hillier, D. John</au><au>Madura, Thomas</au><au>Moffat, Anthony F. J.</au><au>Morris, Patrick</au><au>Nielsen, Krister</au><au>Pittard, Julian M.</au><au>Pollock, Andrew M. T.</au><au>Richardson, Noel D.</au><au>Russell, Christopher M. P.</au><au>Stevens, Ian R.</au><au>Weigelt, Gerd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eta Carinae: A Tale of Two Periastron Passages</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>923</volume><issue>1</issue><spage>102</spage><pages>102-</pages><issn>0004-637X</issn><issn>1538-4357</issn><eissn>1538-4357</eissn><abstract>Since 2002, the far-ultraviolet(FUV)flux(1150–1680Å)of Eta Carinae, monitored by the Hubble SpaceTelescope/Space Telescope Imaging Spectrograph, has increased by an order of magnitude. This increase isattributed to partial dissipation of a line-of-sight(LOS)occulter that blocks the central core of the system. Acrossthe 2020 February periastron passage, changes in the FUV emission show a stronger wavelength dependence thanoccurred across the 2003 July periastron passage. Across both periastron passages, most of the FUV spectrumdropped influx then recovered a few months later. The 2020 periastron passage included enhancements of FUVflux in narrow spectral intervals near periastron followed by a transient absorption and recovery to pre-periastronflux levels. The drop influx is due to increased absorption by singly ionized species as the secondary star plungesdeep into the wind of the primary star, which blocks the companion’s ionizing radiation. The enhanced FUVemission is caused by the companion’s wind-blown cavity briefly opening a window to deeper layers of theprimary star. This is thefirst time transient brightening has been seen in the FUV comparable to transientspreviously seen at longer wavelengths. Changes in resonance line-velocity profiles hint that the dissipating occulteris associated with material in LOS moving at−100 to−300 km s−1, similar in velocity of structures previouslyassociated with the 1890s lesser eruption.</abstract><cop>Goddard Space Flight Center</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac22a6</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-6851-5380</orcidid><orcidid>https://orcid.org/0000-0001-9853-2555</orcidid><orcidid>https://orcid.org/0000-0003-2244-5070</orcidid><orcidid>https://orcid.org/0000-0002-0284-0578</orcidid><orcidid>https://orcid.org/0000-0002-7762-3172</orcidid><orcidid>https://orcid.org/0000-0002-5725-7072</orcidid><orcidid>https://orcid.org/0000-0002-4333-9755</orcidid><orcidid>https://orcid.org/0000-0001-7673-4340</orcidid><orcidid>https://orcid.org/0000-0001-7515-2779</orcidid><orcidid>https://orcid.org/0000-0002-7978-2994</orcidid><orcidid>https://orcid.org/0000-0003-2636-7663</orcidid><orcidid>https://orcid.org/0000-0002-2806-9339</orcidid><orcidid>https://orcid.org/0000-0002-5186-4381</orcidid><orcidid>https://orcid.org/0000-0001-9754-2233</orcidid><orcidid>https://orcid.org/0000-0002-9213-0763</orcidid><orcidid>https://orcid.org/0000-0001-5094-8017</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2021-12, Vol.923 (1), p.102
issn 0004-637X
1538-4357
1538-4357
language eng
recordid cdi_proquest_journals_2609728778
source EZB Electronic Journals Library
subjects Absorption
Astronomy
Astronomy and Astrophysics
Astrophysics
Binary stars
Brightening
Emission
Fluctuations
Hubble Space Telescope
Ionizing radiation
Line of sight
Massive stars
Resonance lines
Space and Planetary Science
Space telescopes
Stellar winds
Velocity
Velocity distribution
Wavelengths
Wind
title Eta Carinae: A Tale of Two Periastron Passages
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A36%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eta%20Carinae:%20A%20Tale%20of%20Two%20Periastron%20Passages&rft.jtitle=The%20Astrophysical%20journal&rft.au=Gull,%20Theodore%20R.&rft.date=2021-12-01&rft.volume=923&rft.issue=1&rft.spage=102&rft.pages=102-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac22a6&rft_dat=%3Cproquest_iop_j%3E2609728778%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-96d118b13fc37598dafeb48eca8da414567094efd04df18d72c96c63c576efa13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2609728778&rft_id=info:pmid/&rfr_iscdi=true