Loading…
Eta Carinae: A Tale of Two Periastron Passages
Since 2002, the far-ultraviolet(FUV)flux(1150–1680Å)of Eta Carinae, monitored by the Hubble SpaceTelescope/Space Telescope Imaging Spectrograph, has increased by an order of magnitude. This increase isattributed to partial dissipation of a line-of-sight(LOS)occulter that blocks the central core of t...
Saved in:
Published in: | The Astrophysical journal 2021-12, Vol.923 (1), p.102 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c438t-96d118b13fc37598dafeb48eca8da414567094efd04df18d72c96c63c576efa13 |
---|---|
cites | cdi_FETCH-LOGICAL-c438t-96d118b13fc37598dafeb48eca8da414567094efd04df18d72c96c63c576efa13 |
container_end_page | |
container_issue | 1 |
container_start_page | 102 |
container_title | The Astrophysical journal |
container_volume | 923 |
creator | Gull, Theodore R. Navarete, Felipe Corcoran, Michael F. Damineli, Augusto Espinoza, David Hamaguchi, Kenji Hartman, Henrik Hillier, D. John Madura, Thomas Moffat, Anthony F. J. Morris, Patrick Nielsen, Krister Pittard, Julian M. Pollock, Andrew M. T. Richardson, Noel D. Russell, Christopher M. P. Stevens, Ian R. Weigelt, Gerd |
description | Since 2002, the far-ultraviolet(FUV)flux(1150–1680Å)of Eta Carinae, monitored by the Hubble SpaceTelescope/Space Telescope Imaging Spectrograph, has increased by an order of magnitude. This increase isattributed to partial dissipation of a line-of-sight(LOS)occulter that blocks the central core of the system. Acrossthe 2020 February periastron passage, changes in the FUV emission show a stronger wavelength dependence thanoccurred across the 2003 July periastron passage. Across both periastron passages, most of the FUV spectrumdropped influx then recovered a few months later. The 2020 periastron passage included enhancements of FUVflux in narrow spectral intervals near periastron followed by a transient absorption and recovery to pre-periastronflux levels. The drop influx is due to increased absorption by singly ionized species as the secondary star plungesdeep into the wind of the primary star, which blocks the companion’s ionizing radiation. The enhanced FUVemission is caused by the companion’s wind-blown cavity briefly opening a window to deeper layers of theprimary star. This is thefirst time transient brightening has been seen in the FUV comparable to transientspreviously seen at longer wavelengths. Changes in resonance line-velocity profiles hint that the dissipating occulteris associated with material in LOS moving at−100 to−300 km s−1, similar in velocity of structures previouslyassociated with the 1890s lesser eruption. |
doi_str_mv | 10.3847/1538-4357/ac22a6 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2609728778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2609728778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-96d118b13fc37598dafeb48eca8da414567094efd04df18d72c96c63c576efa13</originalsourceid><addsrcrecordid>eNp1kEtLAzEURoMoWKt7Fy4GxJ3T5jWTxF2p9QEFu6jiLtzOJGVKOxmTKcV_b8pIiwtXedxzv5schK4JHjDJxZBkTKacZWIIBaWQn6De4eoU9TDGPM2Z-DxHFyGs9keqVA8NJi0kY_BVDeYhGSVzWJvE2WS-c8nM-ApC612dzCAEWJpwic4srIO5-l376P1pMh-_pNO359fxaJoWnMk2VXlJiFwQZgsmMiVLsGbBpSkgbjnhWS6w4saWmJeWyFLQQuVFzopM5MYCYX103-WGnWm2C934agP-Wzuo9GP1MdLOL_UGtpqLDPOI33Z4493X1oRWr9zW1_GFmuZYCSqFkJHCHVV4F4I39hBLsN5L1Htjem9MdxJjy03XUkMAXbc-BmJKo76MKRzLd125cs1xJDQrrSjTJOZS3ZT2-J0_3L9TfwD5KYXz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2609728778</pqid></control><display><type>article</type><title>Eta Carinae: A Tale of Two Periastron Passages</title><source>EZB Electronic Journals Library</source><creator>Gull, Theodore R. ; Navarete, Felipe ; Corcoran, Michael F. ; Damineli, Augusto ; Espinoza, David ; Hamaguchi, Kenji ; Hartman, Henrik ; Hillier, D. John ; Madura, Thomas ; Moffat, Anthony F. J. ; Morris, Patrick ; Nielsen, Krister ; Pittard, Julian M. ; Pollock, Andrew M. T. ; Richardson, Noel D. ; Russell, Christopher M. P. ; Stevens, Ian R. ; Weigelt, Gerd</creator><creatorcontrib>Gull, Theodore R. ; Navarete, Felipe ; Corcoran, Michael F. ; Damineli, Augusto ; Espinoza, David ; Hamaguchi, Kenji ; Hartman, Henrik ; Hillier, D. John ; Madura, Thomas ; Moffat, Anthony F. J. ; Morris, Patrick ; Nielsen, Krister ; Pittard, Julian M. ; Pollock, Andrew M. T. ; Richardson, Noel D. ; Russell, Christopher M. P. ; Stevens, Ian R. ; Weigelt, Gerd</creatorcontrib><description>Since 2002, the far-ultraviolet(FUV)flux(1150–1680Å)of Eta Carinae, monitored by the Hubble SpaceTelescope/Space Telescope Imaging Spectrograph, has increased by an order of magnitude. This increase isattributed to partial dissipation of a line-of-sight(LOS)occulter that blocks the central core of the system. Acrossthe 2020 February periastron passage, changes in the FUV emission show a stronger wavelength dependence thanoccurred across the 2003 July periastron passage. Across both periastron passages, most of the FUV spectrumdropped influx then recovered a few months later. The 2020 periastron passage included enhancements of FUVflux in narrow spectral intervals near periastron followed by a transient absorption and recovery to pre-periastronflux levels. The drop influx is due to increased absorption by singly ionized species as the secondary star plungesdeep into the wind of the primary star, which blocks the companion’s ionizing radiation. The enhanced FUVemission is caused by the companion’s wind-blown cavity briefly opening a window to deeper layers of theprimary star. This is thefirst time transient brightening has been seen in the FUV comparable to transientspreviously seen at longer wavelengths. Changes in resonance line-velocity profiles hint that the dissipating occulteris associated with material in LOS moving at−100 to−300 km s−1, similar in velocity of structures previouslyassociated with the 1890s lesser eruption.</description><identifier>ISSN: 0004-637X</identifier><identifier>ISSN: 1538-4357</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac22a6</identifier><language>eng</language><publisher>Goddard Space Flight Center: The American Astronomical Society</publisher><subject>Absorption ; Astronomy ; Astronomy and Astrophysics ; Astrophysics ; Binary stars ; Brightening ; Emission ; Fluctuations ; Hubble Space Telescope ; Ionizing radiation ; Line of sight ; Massive stars ; Resonance lines ; Space and Planetary Science ; Space telescopes ; Stellar winds ; Velocity ; Velocity distribution ; Wavelengths ; Wind</subject><ispartof>The Astrophysical journal, 2021-12, Vol.923 (1), p.102</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright Determination: MAY_INCLUDE_COPYRIGHT_MATERIAL</rights><rights>Copyright IOP Publishing Dec 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-96d118b13fc37598dafeb48eca8da414567094efd04df18d72c96c63c576efa13</citedby><cites>FETCH-LOGICAL-c438t-96d118b13fc37598dafeb48eca8da414567094efd04df18d72c96c63c576efa13</cites><orcidid>0000-0002-6851-5380 ; 0000-0001-9853-2555 ; 0000-0003-2244-5070 ; 0000-0002-0284-0578 ; 0000-0002-7762-3172 ; 0000-0002-5725-7072 ; 0000-0002-4333-9755 ; 0000-0001-7673-4340 ; 0000-0001-7515-2779 ; 0000-0002-7978-2994 ; 0000-0003-2636-7663 ; 0000-0002-2806-9339 ; 0000-0002-5186-4381 ; 0000-0001-9754-2233 ; 0000-0002-9213-0763 ; 0000-0001-5094-8017</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-47504$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Gull, Theodore R.</creatorcontrib><creatorcontrib>Navarete, Felipe</creatorcontrib><creatorcontrib>Corcoran, Michael F.</creatorcontrib><creatorcontrib>Damineli, Augusto</creatorcontrib><creatorcontrib>Espinoza, David</creatorcontrib><creatorcontrib>Hamaguchi, Kenji</creatorcontrib><creatorcontrib>Hartman, Henrik</creatorcontrib><creatorcontrib>Hillier, D. John</creatorcontrib><creatorcontrib>Madura, Thomas</creatorcontrib><creatorcontrib>Moffat, Anthony F. J.</creatorcontrib><creatorcontrib>Morris, Patrick</creatorcontrib><creatorcontrib>Nielsen, Krister</creatorcontrib><creatorcontrib>Pittard, Julian M.</creatorcontrib><creatorcontrib>Pollock, Andrew M. T.</creatorcontrib><creatorcontrib>Richardson, Noel D.</creatorcontrib><creatorcontrib>Russell, Christopher M. P.</creatorcontrib><creatorcontrib>Stevens, Ian R.</creatorcontrib><creatorcontrib>Weigelt, Gerd</creatorcontrib><title>Eta Carinae: A Tale of Two Periastron Passages</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Since 2002, the far-ultraviolet(FUV)flux(1150–1680Å)of Eta Carinae, monitored by the Hubble SpaceTelescope/Space Telescope Imaging Spectrograph, has increased by an order of magnitude. This increase isattributed to partial dissipation of a line-of-sight(LOS)occulter that blocks the central core of the system. Acrossthe 2020 February periastron passage, changes in the FUV emission show a stronger wavelength dependence thanoccurred across the 2003 July periastron passage. Across both periastron passages, most of the FUV spectrumdropped influx then recovered a few months later. The 2020 periastron passage included enhancements of FUVflux in narrow spectral intervals near periastron followed by a transient absorption and recovery to pre-periastronflux levels. The drop influx is due to increased absorption by singly ionized species as the secondary star plungesdeep into the wind of the primary star, which blocks the companion’s ionizing radiation. The enhanced FUVemission is caused by the companion’s wind-blown cavity briefly opening a window to deeper layers of theprimary star. This is thefirst time transient brightening has been seen in the FUV comparable to transientspreviously seen at longer wavelengths. Changes in resonance line-velocity profiles hint that the dissipating occulteris associated with material in LOS moving at−100 to−300 km s−1, similar in velocity of structures previouslyassociated with the 1890s lesser eruption.</description><subject>Absorption</subject><subject>Astronomy</subject><subject>Astronomy and Astrophysics</subject><subject>Astrophysics</subject><subject>Binary stars</subject><subject>Brightening</subject><subject>Emission</subject><subject>Fluctuations</subject><subject>Hubble Space Telescope</subject><subject>Ionizing radiation</subject><subject>Line of sight</subject><subject>Massive stars</subject><subject>Resonance lines</subject><subject>Space and Planetary Science</subject><subject>Space telescopes</subject><subject>Stellar winds</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Wavelengths</subject><subject>Wind</subject><issn>0004-637X</issn><issn>1538-4357</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEURoMoWKt7Fy4GxJ3T5jWTxF2p9QEFu6jiLtzOJGVKOxmTKcV_b8pIiwtXedxzv5schK4JHjDJxZBkTKacZWIIBaWQn6De4eoU9TDGPM2Z-DxHFyGs9keqVA8NJi0kY_BVDeYhGSVzWJvE2WS-c8nM-ApC612dzCAEWJpwic4srIO5-l376P1pMh-_pNO359fxaJoWnMk2VXlJiFwQZgsmMiVLsGbBpSkgbjnhWS6w4saWmJeWyFLQQuVFzopM5MYCYX103-WGnWm2C934agP-Wzuo9GP1MdLOL_UGtpqLDPOI33Z4493X1oRWr9zW1_GFmuZYCSqFkJHCHVV4F4I39hBLsN5L1Htjem9MdxJjy03XUkMAXbc-BmJKo76MKRzLd125cs1xJDQrrSjTJOZS3ZT2-J0_3L9TfwD5KYXz</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Gull, Theodore R.</creator><creator>Navarete, Felipe</creator><creator>Corcoran, Michael F.</creator><creator>Damineli, Augusto</creator><creator>Espinoza, David</creator><creator>Hamaguchi, Kenji</creator><creator>Hartman, Henrik</creator><creator>Hillier, D. John</creator><creator>Madura, Thomas</creator><creator>Moffat, Anthony F. J.</creator><creator>Morris, Patrick</creator><creator>Nielsen, Krister</creator><creator>Pittard, Julian M.</creator><creator>Pollock, Andrew M. T.</creator><creator>Richardson, Noel D.</creator><creator>Russell, Christopher M. P.</creator><creator>Stevens, Ian R.</creator><creator>Weigelt, Gerd</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-6851-5380</orcidid><orcidid>https://orcid.org/0000-0001-9853-2555</orcidid><orcidid>https://orcid.org/0000-0003-2244-5070</orcidid><orcidid>https://orcid.org/0000-0002-0284-0578</orcidid><orcidid>https://orcid.org/0000-0002-7762-3172</orcidid><orcidid>https://orcid.org/0000-0002-5725-7072</orcidid><orcidid>https://orcid.org/0000-0002-4333-9755</orcidid><orcidid>https://orcid.org/0000-0001-7673-4340</orcidid><orcidid>https://orcid.org/0000-0001-7515-2779</orcidid><orcidid>https://orcid.org/0000-0002-7978-2994</orcidid><orcidid>https://orcid.org/0000-0003-2636-7663</orcidid><orcidid>https://orcid.org/0000-0002-2806-9339</orcidid><orcidid>https://orcid.org/0000-0002-5186-4381</orcidid><orcidid>https://orcid.org/0000-0001-9754-2233</orcidid><orcidid>https://orcid.org/0000-0002-9213-0763</orcidid><orcidid>https://orcid.org/0000-0001-5094-8017</orcidid></search><sort><creationdate>20211201</creationdate><title>Eta Carinae: A Tale of Two Periastron Passages</title><author>Gull, Theodore R. ; Navarete, Felipe ; Corcoran, Michael F. ; Damineli, Augusto ; Espinoza, David ; Hamaguchi, Kenji ; Hartman, Henrik ; Hillier, D. John ; Madura, Thomas ; Moffat, Anthony F. J. ; Morris, Patrick ; Nielsen, Krister ; Pittard, Julian M. ; Pollock, Andrew M. T. ; Richardson, Noel D. ; Russell, Christopher M. P. ; Stevens, Ian R. ; Weigelt, Gerd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-96d118b13fc37598dafeb48eca8da414567094efd04df18d72c96c63c576efa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorption</topic><topic>Astronomy</topic><topic>Astronomy and Astrophysics</topic><topic>Astrophysics</topic><topic>Binary stars</topic><topic>Brightening</topic><topic>Emission</topic><topic>Fluctuations</topic><topic>Hubble Space Telescope</topic><topic>Ionizing radiation</topic><topic>Line of sight</topic><topic>Massive stars</topic><topic>Resonance lines</topic><topic>Space and Planetary Science</topic><topic>Space telescopes</topic><topic>Stellar winds</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Wavelengths</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gull, Theodore R.</creatorcontrib><creatorcontrib>Navarete, Felipe</creatorcontrib><creatorcontrib>Corcoran, Michael F.</creatorcontrib><creatorcontrib>Damineli, Augusto</creatorcontrib><creatorcontrib>Espinoza, David</creatorcontrib><creatorcontrib>Hamaguchi, Kenji</creatorcontrib><creatorcontrib>Hartman, Henrik</creatorcontrib><creatorcontrib>Hillier, D. John</creatorcontrib><creatorcontrib>Madura, Thomas</creatorcontrib><creatorcontrib>Moffat, Anthony F. J.</creatorcontrib><creatorcontrib>Morris, Patrick</creatorcontrib><creatorcontrib>Nielsen, Krister</creatorcontrib><creatorcontrib>Pittard, Julian M.</creatorcontrib><creatorcontrib>Pollock, Andrew M. T.</creatorcontrib><creatorcontrib>Richardson, Noel D.</creatorcontrib><creatorcontrib>Russell, Christopher M. P.</creatorcontrib><creatorcontrib>Stevens, Ian R.</creatorcontrib><creatorcontrib>Weigelt, Gerd</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SwePub Articles full text</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gull, Theodore R.</au><au>Navarete, Felipe</au><au>Corcoran, Michael F.</au><au>Damineli, Augusto</au><au>Espinoza, David</au><au>Hamaguchi, Kenji</au><au>Hartman, Henrik</au><au>Hillier, D. John</au><au>Madura, Thomas</au><au>Moffat, Anthony F. J.</au><au>Morris, Patrick</au><au>Nielsen, Krister</au><au>Pittard, Julian M.</au><au>Pollock, Andrew M. T.</au><au>Richardson, Noel D.</au><au>Russell, Christopher M. P.</au><au>Stevens, Ian R.</au><au>Weigelt, Gerd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eta Carinae: A Tale of Two Periastron Passages</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>923</volume><issue>1</issue><spage>102</spage><pages>102-</pages><issn>0004-637X</issn><issn>1538-4357</issn><eissn>1538-4357</eissn><abstract>Since 2002, the far-ultraviolet(FUV)flux(1150–1680Å)of Eta Carinae, monitored by the Hubble SpaceTelescope/Space Telescope Imaging Spectrograph, has increased by an order of magnitude. This increase isattributed to partial dissipation of a line-of-sight(LOS)occulter that blocks the central core of the system. Acrossthe 2020 February periastron passage, changes in the FUV emission show a stronger wavelength dependence thanoccurred across the 2003 July periastron passage. Across both periastron passages, most of the FUV spectrumdropped influx then recovered a few months later. The 2020 periastron passage included enhancements of FUVflux in narrow spectral intervals near periastron followed by a transient absorption and recovery to pre-periastronflux levels. The drop influx is due to increased absorption by singly ionized species as the secondary star plungesdeep into the wind of the primary star, which blocks the companion’s ionizing radiation. The enhanced FUVemission is caused by the companion’s wind-blown cavity briefly opening a window to deeper layers of theprimary star. This is thefirst time transient brightening has been seen in the FUV comparable to transientspreviously seen at longer wavelengths. Changes in resonance line-velocity profiles hint that the dissipating occulteris associated with material in LOS moving at−100 to−300 km s−1, similar in velocity of structures previouslyassociated with the 1890s lesser eruption.</abstract><cop>Goddard Space Flight Center</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac22a6</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-6851-5380</orcidid><orcidid>https://orcid.org/0000-0001-9853-2555</orcidid><orcidid>https://orcid.org/0000-0003-2244-5070</orcidid><orcidid>https://orcid.org/0000-0002-0284-0578</orcidid><orcidid>https://orcid.org/0000-0002-7762-3172</orcidid><orcidid>https://orcid.org/0000-0002-5725-7072</orcidid><orcidid>https://orcid.org/0000-0002-4333-9755</orcidid><orcidid>https://orcid.org/0000-0001-7673-4340</orcidid><orcidid>https://orcid.org/0000-0001-7515-2779</orcidid><orcidid>https://orcid.org/0000-0002-7978-2994</orcidid><orcidid>https://orcid.org/0000-0003-2636-7663</orcidid><orcidid>https://orcid.org/0000-0002-2806-9339</orcidid><orcidid>https://orcid.org/0000-0002-5186-4381</orcidid><orcidid>https://orcid.org/0000-0001-9754-2233</orcidid><orcidid>https://orcid.org/0000-0002-9213-0763</orcidid><orcidid>https://orcid.org/0000-0001-5094-8017</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2021-12, Vol.923 (1), p.102 |
issn | 0004-637X 1538-4357 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2609728778 |
source | EZB Electronic Journals Library |
subjects | Absorption Astronomy Astronomy and Astrophysics Astrophysics Binary stars Brightening Emission Fluctuations Hubble Space Telescope Ionizing radiation Line of sight Massive stars Resonance lines Space and Planetary Science Space telescopes Stellar winds Velocity Velocity distribution Wavelengths Wind |
title | Eta Carinae: A Tale of Two Periastron Passages |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A36%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eta%20Carinae:%20A%20Tale%20of%20Two%20Periastron%20Passages&rft.jtitle=The%20Astrophysical%20journal&rft.au=Gull,%20Theodore%20R.&rft.date=2021-12-01&rft.volume=923&rft.issue=1&rft.spage=102&rft.pages=102-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac22a6&rft_dat=%3Cproquest_iop_j%3E2609728778%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-96d118b13fc37598dafeb48eca8da414567094efd04df18d72c96c63c576efa13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2609728778&rft_id=info:pmid/&rfr_iscdi=true |