Loading…

Contextuality and Dichotomizations of Random Variables

The Contextuality-by-Default approach to determining and measuring the (non)contextuality of a system of random variables requires that every random variable in the system be represented by an equivalent set of dichotomous random variables. In this paper we present general principles that justify th...

Full description

Saved in:
Bibliographic Details
Published in:Foundations of physics 2022-02, Vol.52 (1), Article 13
Main Authors: Kujala, Janne V., Dzhafarov, Ehtibar N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-c55d5df07c2b9f1d2dc94a11a4b0a5ea57c53e52b669db987da4316b3a899cb33
cites cdi_FETCH-LOGICAL-c319t-c55d5df07c2b9f1d2dc94a11a4b0a5ea57c53e52b669db987da4316b3a899cb33
container_end_page
container_issue 1
container_start_page
container_title Foundations of physics
container_volume 52
creator Kujala, Janne V.
Dzhafarov, Ehtibar N.
description The Contextuality-by-Default approach to determining and measuring the (non)contextuality of a system of random variables requires that every random variable in the system be represented by an equivalent set of dichotomous random variables. In this paper we present general principles that justify the use of dichotomizations and determine their choice. The main idea in choosing dichotomizations is that if the set of possible values of a random variable is endowed with a pre-topology (V-space), then the allowable dichotomizations split the space of possible values into two linked subsets (“linkedness” being a weak form of pre-topological connectedness). We primarily focus on two types of random variables most often encountered in practice: categorical and real-valued ones (including continuous random variables, greatly underrepresented in the contextuality literature). A categorical variable (one with a finite number of unordered values) is represented by all of its possible dichotomizations. If the values of a random variable are real numbers, then they are dichotomized by intervals above and below a variable cut point.
doi_str_mv 10.1007/s10701-021-00527-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2610096868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610096868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c55d5df07c2b9f1d2dc94a11a4b0a5ea57c53e52b669db987da4316b3a899cb33</originalsourceid><addsrcrecordid>eNp9kEtLBDEQhIMouK7-AU8Dnkc7ySSZHGV8woIg6jXkNTrL7mRNsuD6642O4M1D04euqqY-hE4xnGMAcZEwCMA1kDLAiKjlHpphJkgtGeb7aAaAWS0Bt4foKKUlAEjBmxniXRiz_8hbvRryrtKjq64G-xZyWA-fOg9hTFXoq8dyCOvqRcdBm5VPx-ig16vkT373HD3fXD91d_Xi4fa-u1zUlmKZa8uYY64HYYmRPXbEWdlojHVjQDOvmbCMekYM59IZ2QqnG4q5obqV0hpK5-hsyt3E8L71Katl2MaxvFSEl-aSt7wtKjKpbAwpRd-rTRzWOu4UBvXNR018VOGjfvgoWUx0MqUiHl99_Iv-x_UFontoEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610096868</pqid></control><display><type>article</type><title>Contextuality and Dichotomizations of Random Variables</title><source>Springer Nature</source><creator>Kujala, Janne V. ; Dzhafarov, Ehtibar N.</creator><creatorcontrib>Kujala, Janne V. ; Dzhafarov, Ehtibar N.</creatorcontrib><description>The Contextuality-by-Default approach to determining and measuring the (non)contextuality of a system of random variables requires that every random variable in the system be represented by an equivalent set of dichotomous random variables. In this paper we present general principles that justify the use of dichotomizations and determine their choice. The main idea in choosing dichotomizations is that if the set of possible values of a random variable is endowed with a pre-topology (V-space), then the allowable dichotomizations split the space of possible values into two linked subsets (“linkedness” being a weak form of pre-topological connectedness). We primarily focus on two types of random variables most often encountered in practice: categorical and real-valued ones (including continuous random variables, greatly underrepresented in the contextuality literature). A categorical variable (one with a finite number of unordered values) is represented by all of its possible dichotomizations. If the values of a random variable are real numbers, then they are dichotomized by intervals above and below a variable cut point.</description><identifier>ISSN: 0015-9018</identifier><identifier>EISSN: 1572-9516</identifier><identifier>DOI: 10.1007/s10701-021-00527-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Classical and Quantum Gravitation ; Classical Mechanics ; Continuity (mathematics) ; History and Philosophical Foundations of Physics ; Philosophy of Science ; Physics ; Physics and Astronomy ; Quantum Physics ; Random variables ; Real numbers ; Relativity Theory ; Set theory ; Statistical Physics and Dynamical Systems ; Topology</subject><ispartof>Foundations of physics, 2022-02, Vol.52 (1), Article 13</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c55d5df07c2b9f1d2dc94a11a4b0a5ea57c53e52b669db987da4316b3a899cb33</citedby><cites>FETCH-LOGICAL-c319t-c55d5df07c2b9f1d2dc94a11a4b0a5ea57c53e52b669db987da4316b3a899cb33</cites><orcidid>0000-0003-1909-7706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kujala, Janne V.</creatorcontrib><creatorcontrib>Dzhafarov, Ehtibar N.</creatorcontrib><title>Contextuality and Dichotomizations of Random Variables</title><title>Foundations of physics</title><addtitle>Found Phys</addtitle><description>The Contextuality-by-Default approach to determining and measuring the (non)contextuality of a system of random variables requires that every random variable in the system be represented by an equivalent set of dichotomous random variables. In this paper we present general principles that justify the use of dichotomizations and determine their choice. The main idea in choosing dichotomizations is that if the set of possible values of a random variable is endowed with a pre-topology (V-space), then the allowable dichotomizations split the space of possible values into two linked subsets (“linkedness” being a weak form of pre-topological connectedness). We primarily focus on two types of random variables most often encountered in practice: categorical and real-valued ones (including continuous random variables, greatly underrepresented in the contextuality literature). A categorical variable (one with a finite number of unordered values) is represented by all of its possible dichotomizations. If the values of a random variable are real numbers, then they are dichotomized by intervals above and below a variable cut point.</description><subject>Classical and Quantum Gravitation</subject><subject>Classical Mechanics</subject><subject>Continuity (mathematics)</subject><subject>History and Philosophical Foundations of Physics</subject><subject>Philosophy of Science</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Random variables</subject><subject>Real numbers</subject><subject>Relativity Theory</subject><subject>Set theory</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Topology</subject><issn>0015-9018</issn><issn>1572-9516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLBDEQhIMouK7-AU8Dnkc7ySSZHGV8woIg6jXkNTrL7mRNsuD6642O4M1D04euqqY-hE4xnGMAcZEwCMA1kDLAiKjlHpphJkgtGeb7aAaAWS0Bt4foKKUlAEjBmxniXRiz_8hbvRryrtKjq64G-xZyWA-fOg9hTFXoq8dyCOvqRcdBm5VPx-ig16vkT373HD3fXD91d_Xi4fa-u1zUlmKZa8uYY64HYYmRPXbEWdlojHVjQDOvmbCMekYM59IZ2QqnG4q5obqV0hpK5-hsyt3E8L71Katl2MaxvFSEl-aSt7wtKjKpbAwpRd-rTRzWOu4UBvXNR018VOGjfvgoWUx0MqUiHl99_Iv-x_UFontoEg</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Kujala, Janne V.</creator><creator>Dzhafarov, Ehtibar N.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1909-7706</orcidid></search><sort><creationdate>20220201</creationdate><title>Contextuality and Dichotomizations of Random Variables</title><author>Kujala, Janne V. ; Dzhafarov, Ehtibar N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c55d5df07c2b9f1d2dc94a11a4b0a5ea57c53e52b669db987da4316b3a899cb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Classical Mechanics</topic><topic>Continuity (mathematics)</topic><topic>History and Philosophical Foundations of Physics</topic><topic>Philosophy of Science</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Random variables</topic><topic>Real numbers</topic><topic>Relativity Theory</topic><topic>Set theory</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kujala, Janne V.</creatorcontrib><creatorcontrib>Dzhafarov, Ehtibar N.</creatorcontrib><collection>CrossRef</collection><jtitle>Foundations of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kujala, Janne V.</au><au>Dzhafarov, Ehtibar N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contextuality and Dichotomizations of Random Variables</atitle><jtitle>Foundations of physics</jtitle><stitle>Found Phys</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>52</volume><issue>1</issue><artnum>13</artnum><issn>0015-9018</issn><eissn>1572-9516</eissn><abstract>The Contextuality-by-Default approach to determining and measuring the (non)contextuality of a system of random variables requires that every random variable in the system be represented by an equivalent set of dichotomous random variables. In this paper we present general principles that justify the use of dichotomizations and determine their choice. The main idea in choosing dichotomizations is that if the set of possible values of a random variable is endowed with a pre-topology (V-space), then the allowable dichotomizations split the space of possible values into two linked subsets (“linkedness” being a weak form of pre-topological connectedness). We primarily focus on two types of random variables most often encountered in practice: categorical and real-valued ones (including continuous random variables, greatly underrepresented in the contextuality literature). A categorical variable (one with a finite number of unordered values) is represented by all of its possible dichotomizations. If the values of a random variable are real numbers, then they are dichotomized by intervals above and below a variable cut point.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10701-021-00527-9</doi><orcidid>https://orcid.org/0000-0003-1909-7706</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0015-9018
ispartof Foundations of physics, 2022-02, Vol.52 (1), Article 13
issn 0015-9018
1572-9516
language eng
recordid cdi_proquest_journals_2610096868
source Springer Nature
subjects Classical and Quantum Gravitation
Classical Mechanics
Continuity (mathematics)
History and Philosophical Foundations of Physics
Philosophy of Science
Physics
Physics and Astronomy
Quantum Physics
Random variables
Real numbers
Relativity Theory
Set theory
Statistical Physics and Dynamical Systems
Topology
title Contextuality and Dichotomizations of Random Variables
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A38%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contextuality%20and%20Dichotomizations%20of%20Random%20Variables&rft.jtitle=Foundations%20of%20physics&rft.au=Kujala,%20Janne%20V.&rft.date=2022-02-01&rft.volume=52&rft.issue=1&rft.artnum=13&rft.issn=0015-9018&rft.eissn=1572-9516&rft_id=info:doi/10.1007/s10701-021-00527-9&rft_dat=%3Cproquest_cross%3E2610096868%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-c55d5df07c2b9f1d2dc94a11a4b0a5ea57c53e52b669db987da4316b3a899cb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2610096868&rft_id=info:pmid/&rfr_iscdi=true