Loading…
Contextuality and Dichotomizations of Random Variables
The Contextuality-by-Default approach to determining and measuring the (non)contextuality of a system of random variables requires that every random variable in the system be represented by an equivalent set of dichotomous random variables. In this paper we present general principles that justify th...
Saved in:
Published in: | Foundations of physics 2022-02, Vol.52 (1), Article 13 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-c55d5df07c2b9f1d2dc94a11a4b0a5ea57c53e52b669db987da4316b3a899cb33 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-c55d5df07c2b9f1d2dc94a11a4b0a5ea57c53e52b669db987da4316b3a899cb33 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Foundations of physics |
container_volume | 52 |
creator | Kujala, Janne V. Dzhafarov, Ehtibar N. |
description | The Contextuality-by-Default approach to determining and measuring the (non)contextuality of a system of random variables requires that every random variable in the system be represented by an equivalent set of dichotomous random variables. In this paper we present general principles that justify the use of dichotomizations and determine their choice. The main idea in choosing dichotomizations is that if the set of possible values of a random variable is endowed with a pre-topology (V-space), then the allowable dichotomizations split the space of possible values into two linked subsets (“linkedness” being a weak form of pre-topological connectedness). We primarily focus on two types of random variables most often encountered in practice: categorical and real-valued ones (including continuous random variables, greatly underrepresented in the contextuality literature). A categorical variable (one with a finite number of unordered values) is represented by all of its possible dichotomizations. If the values of a random variable are real numbers, then they are dichotomized by intervals above and below a variable cut point. |
doi_str_mv | 10.1007/s10701-021-00527-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2610096868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610096868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c55d5df07c2b9f1d2dc94a11a4b0a5ea57c53e52b669db987da4316b3a899cb33</originalsourceid><addsrcrecordid>eNp9kEtLBDEQhIMouK7-AU8Dnkc7ySSZHGV8woIg6jXkNTrL7mRNsuD6642O4M1D04euqqY-hE4xnGMAcZEwCMA1kDLAiKjlHpphJkgtGeb7aAaAWS0Bt4foKKUlAEjBmxniXRiz_8hbvRryrtKjq64G-xZyWA-fOg9hTFXoq8dyCOvqRcdBm5VPx-ig16vkT373HD3fXD91d_Xi4fa-u1zUlmKZa8uYY64HYYmRPXbEWdlojHVjQDOvmbCMekYM59IZ2QqnG4q5obqV0hpK5-hsyt3E8L71Katl2MaxvFSEl-aSt7wtKjKpbAwpRd-rTRzWOu4UBvXNR018VOGjfvgoWUx0MqUiHl99_Iv-x_UFontoEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610096868</pqid></control><display><type>article</type><title>Contextuality and Dichotomizations of Random Variables</title><source>Springer Nature</source><creator>Kujala, Janne V. ; Dzhafarov, Ehtibar N.</creator><creatorcontrib>Kujala, Janne V. ; Dzhafarov, Ehtibar N.</creatorcontrib><description>The Contextuality-by-Default approach to determining and measuring the (non)contextuality of a system of random variables requires that every random variable in the system be represented by an equivalent set of dichotomous random variables. In this paper we present general principles that justify the use of dichotomizations and determine their choice. The main idea in choosing dichotomizations is that if the set of possible values of a random variable is endowed with a pre-topology (V-space), then the allowable dichotomizations split the space of possible values into two linked subsets (“linkedness” being a weak form of pre-topological connectedness). We primarily focus on two types of random variables most often encountered in practice: categorical and real-valued ones (including continuous random variables, greatly underrepresented in the contextuality literature). A categorical variable (one with a finite number of unordered values) is represented by all of its possible dichotomizations. If the values of a random variable are real numbers, then they are dichotomized by intervals above and below a variable cut point.</description><identifier>ISSN: 0015-9018</identifier><identifier>EISSN: 1572-9516</identifier><identifier>DOI: 10.1007/s10701-021-00527-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Classical and Quantum Gravitation ; Classical Mechanics ; Continuity (mathematics) ; History and Philosophical Foundations of Physics ; Philosophy of Science ; Physics ; Physics and Astronomy ; Quantum Physics ; Random variables ; Real numbers ; Relativity Theory ; Set theory ; Statistical Physics and Dynamical Systems ; Topology</subject><ispartof>Foundations of physics, 2022-02, Vol.52 (1), Article 13</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c55d5df07c2b9f1d2dc94a11a4b0a5ea57c53e52b669db987da4316b3a899cb33</citedby><cites>FETCH-LOGICAL-c319t-c55d5df07c2b9f1d2dc94a11a4b0a5ea57c53e52b669db987da4316b3a899cb33</cites><orcidid>0000-0003-1909-7706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Kujala, Janne V.</creatorcontrib><creatorcontrib>Dzhafarov, Ehtibar N.</creatorcontrib><title>Contextuality and Dichotomizations of Random Variables</title><title>Foundations of physics</title><addtitle>Found Phys</addtitle><description>The Contextuality-by-Default approach to determining and measuring the (non)contextuality of a system of random variables requires that every random variable in the system be represented by an equivalent set of dichotomous random variables. In this paper we present general principles that justify the use of dichotomizations and determine their choice. The main idea in choosing dichotomizations is that if the set of possible values of a random variable is endowed with a pre-topology (V-space), then the allowable dichotomizations split the space of possible values into two linked subsets (“linkedness” being a weak form of pre-topological connectedness). We primarily focus on two types of random variables most often encountered in practice: categorical and real-valued ones (including continuous random variables, greatly underrepresented in the contextuality literature). A categorical variable (one with a finite number of unordered values) is represented by all of its possible dichotomizations. If the values of a random variable are real numbers, then they are dichotomized by intervals above and below a variable cut point.</description><subject>Classical and Quantum Gravitation</subject><subject>Classical Mechanics</subject><subject>Continuity (mathematics)</subject><subject>History and Philosophical Foundations of Physics</subject><subject>Philosophy of Science</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Random variables</subject><subject>Real numbers</subject><subject>Relativity Theory</subject><subject>Set theory</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Topology</subject><issn>0015-9018</issn><issn>1572-9516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLBDEQhIMouK7-AU8Dnkc7ySSZHGV8woIg6jXkNTrL7mRNsuD6642O4M1D04euqqY-hE4xnGMAcZEwCMA1kDLAiKjlHpphJkgtGeb7aAaAWS0Bt4foKKUlAEjBmxniXRiz_8hbvRryrtKjq64G-xZyWA-fOg9hTFXoq8dyCOvqRcdBm5VPx-ig16vkT373HD3fXD91d_Xi4fa-u1zUlmKZa8uYY64HYYmRPXbEWdlojHVjQDOvmbCMekYM59IZ2QqnG4q5obqV0hpK5-hsyt3E8L71Katl2MaxvFSEl-aSt7wtKjKpbAwpRd-rTRzWOu4UBvXNR018VOGjfvgoWUx0MqUiHl99_Iv-x_UFontoEg</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Kujala, Janne V.</creator><creator>Dzhafarov, Ehtibar N.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1909-7706</orcidid></search><sort><creationdate>20220201</creationdate><title>Contextuality and Dichotomizations of Random Variables</title><author>Kujala, Janne V. ; Dzhafarov, Ehtibar N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c55d5df07c2b9f1d2dc94a11a4b0a5ea57c53e52b669db987da4316b3a899cb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Classical Mechanics</topic><topic>Continuity (mathematics)</topic><topic>History and Philosophical Foundations of Physics</topic><topic>Philosophy of Science</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Random variables</topic><topic>Real numbers</topic><topic>Relativity Theory</topic><topic>Set theory</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kujala, Janne V.</creatorcontrib><creatorcontrib>Dzhafarov, Ehtibar N.</creatorcontrib><collection>CrossRef</collection><jtitle>Foundations of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kujala, Janne V.</au><au>Dzhafarov, Ehtibar N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contextuality and Dichotomizations of Random Variables</atitle><jtitle>Foundations of physics</jtitle><stitle>Found Phys</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>52</volume><issue>1</issue><artnum>13</artnum><issn>0015-9018</issn><eissn>1572-9516</eissn><abstract>The Contextuality-by-Default approach to determining and measuring the (non)contextuality of a system of random variables requires that every random variable in the system be represented by an equivalent set of dichotomous random variables. In this paper we present general principles that justify the use of dichotomizations and determine their choice. The main idea in choosing dichotomizations is that if the set of possible values of a random variable is endowed with a pre-topology (V-space), then the allowable dichotomizations split the space of possible values into two linked subsets (“linkedness” being a weak form of pre-topological connectedness). We primarily focus on two types of random variables most often encountered in practice: categorical and real-valued ones (including continuous random variables, greatly underrepresented in the contextuality literature). A categorical variable (one with a finite number of unordered values) is represented by all of its possible dichotomizations. If the values of a random variable are real numbers, then they are dichotomized by intervals above and below a variable cut point.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10701-021-00527-9</doi><orcidid>https://orcid.org/0000-0003-1909-7706</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0015-9018 |
ispartof | Foundations of physics, 2022-02, Vol.52 (1), Article 13 |
issn | 0015-9018 1572-9516 |
language | eng |
recordid | cdi_proquest_journals_2610096868 |
source | Springer Nature |
subjects | Classical and Quantum Gravitation Classical Mechanics Continuity (mathematics) History and Philosophical Foundations of Physics Philosophy of Science Physics Physics and Astronomy Quantum Physics Random variables Real numbers Relativity Theory Set theory Statistical Physics and Dynamical Systems Topology |
title | Contextuality and Dichotomizations of Random Variables |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T07%3A38%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contextuality%20and%20Dichotomizations%20of%20Random%20Variables&rft.jtitle=Foundations%20of%20physics&rft.au=Kujala,%20Janne%20V.&rft.date=2022-02-01&rft.volume=52&rft.issue=1&rft.artnum=13&rft.issn=0015-9018&rft.eissn=1572-9516&rft_id=info:doi/10.1007/s10701-021-00527-9&rft_dat=%3Cproquest_cross%3E2610096868%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-c55d5df07c2b9f1d2dc94a11a4b0a5ea57c53e52b669db987da4316b3a899cb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2610096868&rft_id=info:pmid/&rfr_iscdi=true |