Loading…

EMC Testing of Electricity Meters Using Real-World and Artificial Current Waveforms

In 2015, the energy measurement of some static electricity meters was found to be sensitive to specific conducted electromagnetic disturbances with very fast current changes caused by highly nonlinear loads, leading to meter errors up to several hundred percent. This article describes new results on...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on electromagnetic compatibility 2021-12, Vol.63 (6), p.1865-1874
Main Authors: van den Brom, Helko E., van Leeuwen, Ronald, Marais, Zander, ten Have, Bas, Hartman, Tom, Azpurua, Marco, Pous, Marc, Kok, Gertjan, van Veghel, Marijn, Kolevatov, Ilia, Malmbekk, Helge, Silva, Ferran, Leferink, Frank
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In 2015, the energy measurement of some static electricity meters was found to be sensitive to specific conducted electromagnetic disturbances with very fast current changes caused by highly nonlinear loads, leading to meter errors up to several hundred percent. This article describes new results on the electromagnetic compatibility (EMC) of 16 different meters from all over Europe when exposed to real-world disturbance signals. Those test signals were obtained from household appliances and onsite measurements at metered supply points all over Europe. The results show that also the interference signals recorded onsite can cause measurement errors as large as several hundred percent, even for meters that pass the present EMC standards. This unambiguously demonstrates that the present immunity testing standards do not cover the most disturbing conducted interference occurring in present daily-life situations due to the increased use of nonlinear electronics. Furthermore, to enable the adoption of potential new test waveforms in future standards for electricity meter testing, artificial test waveforms were constructed based on real-world waveforms using a piece-wise linear model. These artificial test waveforms were demonstrated to cause meter errors similar to those caused by the original real-life waveforms they are representing, showing that they are suitable candidates for use in improved standardization of electricity meter testing.
ISSN:0018-9375
1558-187X
DOI:10.1109/TEMC.2021.3099721