Loading…
SARS-CoV-2 Infection Fatality Rates in India: Systematic Review, Meta-analysis and Model-based Estimation
Introduction: Fervourous investigation and dialogue surrounding the true number of SARS-CoV-2-related deaths and implied infection fatality rates in India have been ongoing throughout the pandemic, and especially pronounced during the nation’s devastating second wave. We aim to synthesize the existi...
Saved in:
Published in: | Studies in microeconomics 2021-12, Vol.9 (2), p.137-179 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Introduction:
Fervourous investigation and dialogue surrounding the true number of SARS-CoV-2-related deaths and implied infection fatality rates in India have been ongoing throughout the pandemic, and especially pronounced during the nation’s devastating second wave. We aim to synthesize the existing literature on the true SARS-CoV-2 excess deaths and infection fatality rates (IFR) in India through a systematic search followed by viable meta-analysis. We then provide updated epidemiological model-based estimates of the wave 1, wave 2 and combined IFRs using an extension of the Susceptible-Exposed-Infected-Removed (SEIR) model, using data from 1 April 2020 to 30 June 2021.
Methods:
Following PRISMA guidelines, the databases PubMed, Embase, Global Index Medicus, as well as BioRxiv, MedRxiv and SSRN for preprints (accessed through iSearch), were searched on 3 July 2021 (with results verified through 15 August 2021). Altogether, using a two-step approach, 4,765 initial citations were screened, resulting in 37 citations included in the narrative review and 19 studies with 41datapoints included in the quantitative synthesis. Using a random effects model with DerSimonian-Laird estimation, we meta-analysed IFR1, which is defined as the ratio of the total number of observed reported deaths divided by the total number of estimated infections, and IFR2 (which accounts for death underreporting in the numerator of IFR1). For the latter, we provided lower and upper bounds based on the available range of estimates of death undercounting, often arising from an excess death calculation. The primary focus is to estimate pooled nationwide estimates of IFRs with the secondary goal of estimating pooled regional and state-specific estimates for SARS-CoV-2-related IFRs in India. We also tried to stratify our empirical results across the first and second waves. In tandem, we presented updated SEIR model estimates of IFRs for waves 1, 2, and combined across the waves with observed case and death count data from 1 April 2020 to 30 June 2021.
Results:
For India, countrywide, the underreporting factors (URF) for cases (sourced from serosurveys) range from 14.3 to 29.1 in the four nationwide serosurveys; URFs for deaths (sourced from excess deaths reports) range from 4.4 to 11.9 with cumulative excess deaths ranging from 1.79 to 4.9 million (as of June 2021). Nationwide pooled IFR1 and IFR2 estimates for India are 0.097% (95% confidence interval [CI]: 0.067–0.140) and 0.365% (95% CI: |
---|---|
ISSN: | 2321-0222 2321-8398 |
DOI: | 10.1177/23210222211054324 |