Loading…

Phase Transitions in High Purity Zr Under Dynamic Compression

We present results from ramp compression experiments on high-purity Zr that show the \(\alpha \rightarrow \omega\), \(\omega \rightarrow \beta\), as well as reverse \(\beta \rightarrow \omega\) phase transitions. Simulations with a multi-phase equation of state and phenomenological kinetic model mat...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-04
Main Authors: Greeff, C W, Brown, J, Velisavljevic, N, Rigg, P A
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Greeff, C W
Brown, J
Velisavljevic, N
Rigg, P A
description We present results from ramp compression experiments on high-purity Zr that show the \(\alpha \rightarrow \omega\), \(\omega \rightarrow \beta\), as well as reverse \(\beta \rightarrow \omega\) phase transitions. Simulations with a multi-phase equation of state and phenomenological kinetic model match the experimental wave profiles well. While the dynamic \(\alpha \rightarrow \omega\) transition occurs \(\sim 9\) GPa above the equilibrium phase boundary, the \(\omega \rightarrow \beta\) transition occurs within 0.9~GPa of equilibrium. We estimate that the dynamic compression path intersects the equilibrium \(\omega - \beta\) line at \(P= 29.2\) GPa, and \(T = 490\) K. The thermodynamic path in the interior of the sample lies \(\sim 100\) K above the isentrope at the point of the \(\omega \rightarrow \beta\) transition. Approximately half of this dissipative temperature rise is due to plastic work, and half is due to the non-equilibrium \(\alpha \rightarrow \omega\) transition. The inferred rate of the \(\alpha \rightarrow \omega\) transition is several orders of magnitude higher than that measured in dynamic diamond anvil cell (DDAC) experiments in an overlapping pressure range. We discuss a model for the influence of shear stress on the nucleation rate. The small fractional volume change \(\Delta V/V \approx 0.1\) at the \(\alpha \rightarrow \omega\) transition amplifies the effect of shear stress, and we estimate that for this case shear stress is equivalent to a pressure increase in the range of several GPa. Correcting our transition rate to a hydrostatic rate brings it approximately into line with the DDAC results, suggesting that shear stress plays a significant role in the transformation rate.
doi_str_mv 10.48550/arxiv.2112.07763
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2610666210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610666210</sourcerecordid><originalsourceid>FETCH-LOGICAL-a953-b1f96fdd7e4d4845811c3ffe9948332ab41c7190ade742eb964f805aa52992e13</originalsourceid><addsrcrecordid>eNotjbtOwzAUQC0kJKrSD2CzxJzge_0eGFB4FKkSHcLCUjmJQ11Rp9gJon_fSjCd5egcQm6AlcJIye5c-g0_JQJgybRW_ILMkHMojEC8Ioucd4wxVBql5DNyv9667GmdXMxhDEPMNES6DJ9bup5SGI_0I9H32PlEH4_R7UNLq2F_SD7ns3xNLnv3lf3in3NSPz_V1bJYvb28Vg-rwlnJiwZ6q_qu0150wghpAFre995aYThH1whoNVjmOq8F-sYq0RsmnZNoLXrgc3L7lz2k4XvyedzshinF83GDCphSCoHxEyDHSQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610666210</pqid></control><display><type>article</type><title>Phase Transitions in High Purity Zr Under Dynamic Compression</title><source>Publicly Available Content Database</source><creator>Greeff, C W ; Brown, J ; Velisavljevic, N ; Rigg, P A</creator><creatorcontrib>Greeff, C W ; Brown, J ; Velisavljevic, N ; Rigg, P A</creatorcontrib><description>We present results from ramp compression experiments on high-purity Zr that show the \(\alpha \rightarrow \omega\), \(\omega \rightarrow \beta\), as well as reverse \(\beta \rightarrow \omega\) phase transitions. Simulations with a multi-phase equation of state and phenomenological kinetic model match the experimental wave profiles well. While the dynamic \(\alpha \rightarrow \omega\) transition occurs \(\sim 9\) GPa above the equilibrium phase boundary, the \(\omega \rightarrow \beta\) transition occurs within 0.9~GPa of equilibrium. We estimate that the dynamic compression path intersects the equilibrium \(\omega - \beta\) line at \(P= 29.2\) GPa, and \(T = 490\) K. The thermodynamic path in the interior of the sample lies \(\sim 100\) K above the isentrope at the point of the \(\omega \rightarrow \beta\) transition. Approximately half of this dissipative temperature rise is due to plastic work, and half is due to the non-equilibrium \(\alpha \rightarrow \omega\) transition. The inferred rate of the \(\alpha \rightarrow \omega\) transition is several orders of magnitude higher than that measured in dynamic diamond anvil cell (DDAC) experiments in an overlapping pressure range. We discuss a model for the influence of shear stress on the nucleation rate. The small fractional volume change \(\Delta V/V \approx 0.1\) at the \(\alpha \rightarrow \omega\) transition amplifies the effect of shear stress, and we estimate that for this case shear stress is equivalent to a pressure increase in the range of several GPa. Correcting our transition rate to a hydrostatic rate brings it approximately into line with the DDAC results, suggesting that shear stress plays a significant role in the transformation rate.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2112.07763</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Diamond anvil cells ; Equations of state ; Equilibrium ; Isentrope ; Nucleation ; Phase transitions ; Purity ; Shear stress ; Zirconium</subject><ispartof>arXiv.org, 2022-04</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2610666210?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Greeff, C W</creatorcontrib><creatorcontrib>Brown, J</creatorcontrib><creatorcontrib>Velisavljevic, N</creatorcontrib><creatorcontrib>Rigg, P A</creatorcontrib><title>Phase Transitions in High Purity Zr Under Dynamic Compression</title><title>arXiv.org</title><description>We present results from ramp compression experiments on high-purity Zr that show the \(\alpha \rightarrow \omega\), \(\omega \rightarrow \beta\), as well as reverse \(\beta \rightarrow \omega\) phase transitions. Simulations with a multi-phase equation of state and phenomenological kinetic model match the experimental wave profiles well. While the dynamic \(\alpha \rightarrow \omega\) transition occurs \(\sim 9\) GPa above the equilibrium phase boundary, the \(\omega \rightarrow \beta\) transition occurs within 0.9~GPa of equilibrium. We estimate that the dynamic compression path intersects the equilibrium \(\omega - \beta\) line at \(P= 29.2\) GPa, and \(T = 490\) K. The thermodynamic path in the interior of the sample lies \(\sim 100\) K above the isentrope at the point of the \(\omega \rightarrow \beta\) transition. Approximately half of this dissipative temperature rise is due to plastic work, and half is due to the non-equilibrium \(\alpha \rightarrow \omega\) transition. The inferred rate of the \(\alpha \rightarrow \omega\) transition is several orders of magnitude higher than that measured in dynamic diamond anvil cell (DDAC) experiments in an overlapping pressure range. We discuss a model for the influence of shear stress on the nucleation rate. The small fractional volume change \(\Delta V/V \approx 0.1\) at the \(\alpha \rightarrow \omega\) transition amplifies the effect of shear stress, and we estimate that for this case shear stress is equivalent to a pressure increase in the range of several GPa. Correcting our transition rate to a hydrostatic rate brings it approximately into line with the DDAC results, suggesting that shear stress plays a significant role in the transformation rate.</description><subject>Diamond anvil cells</subject><subject>Equations of state</subject><subject>Equilibrium</subject><subject>Isentrope</subject><subject>Nucleation</subject><subject>Phase transitions</subject><subject>Purity</subject><subject>Shear stress</subject><subject>Zirconium</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjbtOwzAUQC0kJKrSD2CzxJzge_0eGFB4FKkSHcLCUjmJQ11Rp9gJon_fSjCd5egcQm6AlcJIye5c-g0_JQJgybRW_ILMkHMojEC8Ioucd4wxVBql5DNyv9667GmdXMxhDEPMNES6DJ9bup5SGI_0I9H32PlEH4_R7UNLq2F_SD7ns3xNLnv3lf3in3NSPz_V1bJYvb28Vg-rwlnJiwZ6q_qu0150wghpAFre995aYThH1whoNVjmOq8F-sYq0RsmnZNoLXrgc3L7lz2k4XvyedzshinF83GDCphSCoHxEyDHSQY</recordid><startdate>20220427</startdate><enddate>20220427</enddate><creator>Greeff, C W</creator><creator>Brown, J</creator><creator>Velisavljevic, N</creator><creator>Rigg, P A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220427</creationdate><title>Phase Transitions in High Purity Zr Under Dynamic Compression</title><author>Greeff, C W ; Brown, J ; Velisavljevic, N ; Rigg, P A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a953-b1f96fdd7e4d4845811c3ffe9948332ab41c7190ade742eb964f805aa52992e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Diamond anvil cells</topic><topic>Equations of state</topic><topic>Equilibrium</topic><topic>Isentrope</topic><topic>Nucleation</topic><topic>Phase transitions</topic><topic>Purity</topic><topic>Shear stress</topic><topic>Zirconium</topic><toplevel>online_resources</toplevel><creatorcontrib>Greeff, C W</creatorcontrib><creatorcontrib>Brown, J</creatorcontrib><creatorcontrib>Velisavljevic, N</creatorcontrib><creatorcontrib>Rigg, P A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greeff, C W</au><au>Brown, J</au><au>Velisavljevic, N</au><au>Rigg, P A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase Transitions in High Purity Zr Under Dynamic Compression</atitle><jtitle>arXiv.org</jtitle><date>2022-04-27</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We present results from ramp compression experiments on high-purity Zr that show the \(\alpha \rightarrow \omega\), \(\omega \rightarrow \beta\), as well as reverse \(\beta \rightarrow \omega\) phase transitions. Simulations with a multi-phase equation of state and phenomenological kinetic model match the experimental wave profiles well. While the dynamic \(\alpha \rightarrow \omega\) transition occurs \(\sim 9\) GPa above the equilibrium phase boundary, the \(\omega \rightarrow \beta\) transition occurs within 0.9~GPa of equilibrium. We estimate that the dynamic compression path intersects the equilibrium \(\omega - \beta\) line at \(P= 29.2\) GPa, and \(T = 490\) K. The thermodynamic path in the interior of the sample lies \(\sim 100\) K above the isentrope at the point of the \(\omega \rightarrow \beta\) transition. Approximately half of this dissipative temperature rise is due to plastic work, and half is due to the non-equilibrium \(\alpha \rightarrow \omega\) transition. The inferred rate of the \(\alpha \rightarrow \omega\) transition is several orders of magnitude higher than that measured in dynamic diamond anvil cell (DDAC) experiments in an overlapping pressure range. We discuss a model for the influence of shear stress on the nucleation rate. The small fractional volume change \(\Delta V/V \approx 0.1\) at the \(\alpha \rightarrow \omega\) transition amplifies the effect of shear stress, and we estimate that for this case shear stress is equivalent to a pressure increase in the range of several GPa. Correcting our transition rate to a hydrostatic rate brings it approximately into line with the DDAC results, suggesting that shear stress plays a significant role in the transformation rate.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2112.07763</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2610666210
source Publicly Available Content Database
subjects Diamond anvil cells
Equations of state
Equilibrium
Isentrope
Nucleation
Phase transitions
Purity
Shear stress
Zirconium
title Phase Transitions in High Purity Zr Under Dynamic Compression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A44%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20Transitions%20in%20High%20Purity%20Zr%20Under%20Dynamic%20Compression&rft.jtitle=arXiv.org&rft.au=Greeff,%20C%20W&rft.date=2022-04-27&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2112.07763&rft_dat=%3Cproquest%3E2610666210%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a953-b1f96fdd7e4d4845811c3ffe9948332ab41c7190ade742eb964f805aa52992e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2610666210&rft_id=info:pmid/&rfr_iscdi=true