Loading…
Machine Learning Classification to Identify Catastrophic Outlier Photometric Redshift Estimates
We present results of using a basic binary classification neural network model to identify likely catastrophic outlier photometric redshift estimates of individual galaxies, based only on the galaxies' measured photometric band magnitude values. We find that a simple implementation of this clas...
Saved in:
Published in: | arXiv.org 2022-02 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Singal, J Silverman, G Jones, E T Do Boscoe, B Wan, Y |
description | We present results of using a basic binary classification neural network model to identify likely catastrophic outlier photometric redshift estimates of individual galaxies, based only on the galaxies' measured photometric band magnitude values. We find that a simple implementation of this classification can identify a significant fraction of galaxies with catastrophic outlier photometric redshift estimates while falsely categorizing only a much smaller fraction of non-outliers. These methods have the potential to reduce the errors introduced into science analyses by catastrophic outlier photometric redshift estimates. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2610667214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610667214</sourcerecordid><originalsourceid>FETCH-proquest_journals_26106672143</originalsourceid><addsrcrecordid>eNqNjs0KgkAURocgKMp3GGgt6PhTezEKiiLay6B38orO2NzrorfPRQ_Q6oNzzuJbiLVKkjg8pEqtREDURVGk8r3KsmQtqquuW7QgL6C9RfuSRa-J0GCtGZ2V7OS5ActoPrLQrIm9G1us5W3iHsHLe-vYDcB-Zg9oqEXDsiTGQTPQViyN7gmC327E7lg-i1M4eveegLjq3OTtrCqVx1E-_4rT5L_qC_mRRTk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610667214</pqid></control><display><type>article</type><title>Machine Learning Classification to Identify Catastrophic Outlier Photometric Redshift Estimates</title><source>Publicly Available Content (ProQuest)</source><creator>Singal, J ; Silverman, G ; Jones, E ; T Do ; Boscoe, B ; Wan, Y</creator><creatorcontrib>Singal, J ; Silverman, G ; Jones, E ; T Do ; Boscoe, B ; Wan, Y</creatorcontrib><description>We present results of using a basic binary classification neural network model to identify likely catastrophic outlier photometric redshift estimates of individual galaxies, based only on the galaxies' measured photometric band magnitude values. We find that a simple implementation of this classification can identify a significant fraction of galaxies with catastrophic outlier photometric redshift estimates while falsely categorizing only a much smaller fraction of non-outliers. These methods have the potential to reduce the errors introduced into science analyses by catastrophic outlier photometric redshift estimates.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Classification ; Data analysis ; Estimates ; Galaxies ; Machine learning ; Neural networks ; Outliers (statistics) ; Photometry ; Red shift</subject><ispartof>arXiv.org, 2022-02</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2610667214?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Singal, J</creatorcontrib><creatorcontrib>Silverman, G</creatorcontrib><creatorcontrib>Jones, E</creatorcontrib><creatorcontrib>T Do</creatorcontrib><creatorcontrib>Boscoe, B</creatorcontrib><creatorcontrib>Wan, Y</creatorcontrib><title>Machine Learning Classification to Identify Catastrophic Outlier Photometric Redshift Estimates</title><title>arXiv.org</title><description>We present results of using a basic binary classification neural network model to identify likely catastrophic outlier photometric redshift estimates of individual galaxies, based only on the galaxies' measured photometric band magnitude values. We find that a simple implementation of this classification can identify a significant fraction of galaxies with catastrophic outlier photometric redshift estimates while falsely categorizing only a much smaller fraction of non-outliers. These methods have the potential to reduce the errors introduced into science analyses by catastrophic outlier photometric redshift estimates.</description><subject>Classification</subject><subject>Data analysis</subject><subject>Estimates</subject><subject>Galaxies</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Outliers (statistics)</subject><subject>Photometry</subject><subject>Red shift</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjs0KgkAURocgKMp3GGgt6PhTezEKiiLay6B38orO2NzrorfPRQ_Q6oNzzuJbiLVKkjg8pEqtREDURVGk8r3KsmQtqquuW7QgL6C9RfuSRa-J0GCtGZ2V7OS5ActoPrLQrIm9G1us5W3iHsHLe-vYDcB-Zg9oqEXDsiTGQTPQViyN7gmC327E7lg-i1M4eveegLjq3OTtrCqVx1E-_4rT5L_qC_mRRTk</recordid><startdate>20220223</startdate><enddate>20220223</enddate><creator>Singal, J</creator><creator>Silverman, G</creator><creator>Jones, E</creator><creator>T Do</creator><creator>Boscoe, B</creator><creator>Wan, Y</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220223</creationdate><title>Machine Learning Classification to Identify Catastrophic Outlier Photometric Redshift Estimates</title><author>Singal, J ; Silverman, G ; Jones, E ; T Do ; Boscoe, B ; Wan, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26106672143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Classification</topic><topic>Data analysis</topic><topic>Estimates</topic><topic>Galaxies</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Outliers (statistics)</topic><topic>Photometry</topic><topic>Red shift</topic><toplevel>online_resources</toplevel><creatorcontrib>Singal, J</creatorcontrib><creatorcontrib>Silverman, G</creatorcontrib><creatorcontrib>Jones, E</creatorcontrib><creatorcontrib>T Do</creatorcontrib><creatorcontrib>Boscoe, B</creatorcontrib><creatorcontrib>Wan, Y</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singal, J</au><au>Silverman, G</au><au>Jones, E</au><au>T Do</au><au>Boscoe, B</au><au>Wan, Y</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Machine Learning Classification to Identify Catastrophic Outlier Photometric Redshift Estimates</atitle><jtitle>arXiv.org</jtitle><date>2022-02-23</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We present results of using a basic binary classification neural network model to identify likely catastrophic outlier photometric redshift estimates of individual galaxies, based only on the galaxies' measured photometric band magnitude values. We find that a simple implementation of this classification can identify a significant fraction of galaxies with catastrophic outlier photometric redshift estimates while falsely categorizing only a much smaller fraction of non-outliers. These methods have the potential to reduce the errors introduced into science analyses by catastrophic outlier photometric redshift estimates.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2610667214 |
source | Publicly Available Content (ProQuest) |
subjects | Classification Data analysis Estimates Galaxies Machine learning Neural networks Outliers (statistics) Photometry Red shift |
title | Machine Learning Classification to Identify Catastrophic Outlier Photometric Redshift Estimates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A16%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Machine%20Learning%20Classification%20to%20Identify%20Catastrophic%20Outlier%20Photometric%20Redshift%20Estimates&rft.jtitle=arXiv.org&rft.au=Singal,%20J&rft.date=2022-02-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2610667214%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26106672143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2610667214&rft_id=info:pmid/&rfr_iscdi=true |