Loading…

Machine Learning Classification to Identify Catastrophic Outlier Photometric Redshift Estimates

We present results of using a basic binary classification neural network model to identify likely catastrophic outlier photometric redshift estimates of individual galaxies, based only on the galaxies' measured photometric band magnitude values. We find that a simple implementation of this clas...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-02
Main Authors: Singal, J, Silverman, G, Jones, E, T Do, Boscoe, B, Wan, Y
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Singal, J
Silverman, G
Jones, E
T Do
Boscoe, B
Wan, Y
description We present results of using a basic binary classification neural network model to identify likely catastrophic outlier photometric redshift estimates of individual galaxies, based only on the galaxies' measured photometric band magnitude values. We find that a simple implementation of this classification can identify a significant fraction of galaxies with catastrophic outlier photometric redshift estimates while falsely categorizing only a much smaller fraction of non-outliers. These methods have the potential to reduce the errors introduced into science analyses by catastrophic outlier photometric redshift estimates.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2610667214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610667214</sourcerecordid><originalsourceid>FETCH-proquest_journals_26106672143</originalsourceid><addsrcrecordid>eNqNjs0KgkAURocgKMp3GGgt6PhTezEKiiLay6B38orO2NzrorfPRQ_Q6oNzzuJbiLVKkjg8pEqtREDURVGk8r3KsmQtqquuW7QgL6C9RfuSRa-J0GCtGZ2V7OS5ActoPrLQrIm9G1us5W3iHsHLe-vYDcB-Zg9oqEXDsiTGQTPQViyN7gmC327E7lg-i1M4eveegLjq3OTtrCqVx1E-_4rT5L_qC_mRRTk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610667214</pqid></control><display><type>article</type><title>Machine Learning Classification to Identify Catastrophic Outlier Photometric Redshift Estimates</title><source>Publicly Available Content (ProQuest)</source><creator>Singal, J ; Silverman, G ; Jones, E ; T Do ; Boscoe, B ; Wan, Y</creator><creatorcontrib>Singal, J ; Silverman, G ; Jones, E ; T Do ; Boscoe, B ; Wan, Y</creatorcontrib><description>We present results of using a basic binary classification neural network model to identify likely catastrophic outlier photometric redshift estimates of individual galaxies, based only on the galaxies' measured photometric band magnitude values. We find that a simple implementation of this classification can identify a significant fraction of galaxies with catastrophic outlier photometric redshift estimates while falsely categorizing only a much smaller fraction of non-outliers. These methods have the potential to reduce the errors introduced into science analyses by catastrophic outlier photometric redshift estimates.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Classification ; Data analysis ; Estimates ; Galaxies ; Machine learning ; Neural networks ; Outliers (statistics) ; Photometry ; Red shift</subject><ispartof>arXiv.org, 2022-02</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2610667214?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Singal, J</creatorcontrib><creatorcontrib>Silverman, G</creatorcontrib><creatorcontrib>Jones, E</creatorcontrib><creatorcontrib>T Do</creatorcontrib><creatorcontrib>Boscoe, B</creatorcontrib><creatorcontrib>Wan, Y</creatorcontrib><title>Machine Learning Classification to Identify Catastrophic Outlier Photometric Redshift Estimates</title><title>arXiv.org</title><description>We present results of using a basic binary classification neural network model to identify likely catastrophic outlier photometric redshift estimates of individual galaxies, based only on the galaxies' measured photometric band magnitude values. We find that a simple implementation of this classification can identify a significant fraction of galaxies with catastrophic outlier photometric redshift estimates while falsely categorizing only a much smaller fraction of non-outliers. These methods have the potential to reduce the errors introduced into science analyses by catastrophic outlier photometric redshift estimates.</description><subject>Classification</subject><subject>Data analysis</subject><subject>Estimates</subject><subject>Galaxies</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Outliers (statistics)</subject><subject>Photometry</subject><subject>Red shift</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjs0KgkAURocgKMp3GGgt6PhTezEKiiLay6B38orO2NzrorfPRQ_Q6oNzzuJbiLVKkjg8pEqtREDURVGk8r3KsmQtqquuW7QgL6C9RfuSRa-J0GCtGZ2V7OS5ActoPrLQrIm9G1us5W3iHsHLe-vYDcB-Zg9oqEXDsiTGQTPQViyN7gmC327E7lg-i1M4eveegLjq3OTtrCqVx1E-_4rT5L_qC_mRRTk</recordid><startdate>20220223</startdate><enddate>20220223</enddate><creator>Singal, J</creator><creator>Silverman, G</creator><creator>Jones, E</creator><creator>T Do</creator><creator>Boscoe, B</creator><creator>Wan, Y</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220223</creationdate><title>Machine Learning Classification to Identify Catastrophic Outlier Photometric Redshift Estimates</title><author>Singal, J ; Silverman, G ; Jones, E ; T Do ; Boscoe, B ; Wan, Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26106672143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Classification</topic><topic>Data analysis</topic><topic>Estimates</topic><topic>Galaxies</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Outliers (statistics)</topic><topic>Photometry</topic><topic>Red shift</topic><toplevel>online_resources</toplevel><creatorcontrib>Singal, J</creatorcontrib><creatorcontrib>Silverman, G</creatorcontrib><creatorcontrib>Jones, E</creatorcontrib><creatorcontrib>T Do</creatorcontrib><creatorcontrib>Boscoe, B</creatorcontrib><creatorcontrib>Wan, Y</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singal, J</au><au>Silverman, G</au><au>Jones, E</au><au>T Do</au><au>Boscoe, B</au><au>Wan, Y</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Machine Learning Classification to Identify Catastrophic Outlier Photometric Redshift Estimates</atitle><jtitle>arXiv.org</jtitle><date>2022-02-23</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We present results of using a basic binary classification neural network model to identify likely catastrophic outlier photometric redshift estimates of individual galaxies, based only on the galaxies' measured photometric band magnitude values. We find that a simple implementation of this classification can identify a significant fraction of galaxies with catastrophic outlier photometric redshift estimates while falsely categorizing only a much smaller fraction of non-outliers. These methods have the potential to reduce the errors introduced into science analyses by catastrophic outlier photometric redshift estimates.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2610667214
source Publicly Available Content (ProQuest)
subjects Classification
Data analysis
Estimates
Galaxies
Machine learning
Neural networks
Outliers (statistics)
Photometry
Red shift
title Machine Learning Classification to Identify Catastrophic Outlier Photometric Redshift Estimates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A16%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Machine%20Learning%20Classification%20to%20Identify%20Catastrophic%20Outlier%20Photometric%20Redshift%20Estimates&rft.jtitle=arXiv.org&rft.au=Singal,%20J&rft.date=2022-02-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2610667214%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26106672143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2610667214&rft_id=info:pmid/&rfr_iscdi=true