Loading…

Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and Applications

The thriving of artificial intelligence (AI) applications is driving the further evolution of wireless networks. It has been envisioned that 6G will be transformative and will revolutionize the evolution of wireless from "connected things" to "connected intelligence". However, st...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal on selected areas in communications 2022-01, Vol.40 (1), p.5-36
Main Authors: Letaief, Khaled B., Shi, Yuanming, Lu, Jianmin, Lu, Jianhua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c402t-c2bf9ff3d4ebb39d95f5e1123bdf3cd6ef8e74f1ea4392b6559addbe388804863
cites cdi_FETCH-LOGICAL-c402t-c2bf9ff3d4ebb39d95f5e1123bdf3cd6ef8e74f1ea4392b6559addbe388804863
container_end_page 36
container_issue 1
container_start_page 5
container_title IEEE journal on selected areas in communications
container_volume 40
creator Letaief, Khaled B.
Shi, Yuanming
Lu, Jianmin
Lu, Jianhua
description The thriving of artificial intelligence (AI) applications is driving the further evolution of wireless networks. It has been envisioned that 6G will be transformative and will revolutionize the evolution of wireless from "connected things" to "connected intelligence". However, state-of-the-art deep learning and big data analytics based AI systems require tremendous computation and communication resources, causing significant latency, energy consumption, network congestion, and privacy leakage in both of the training and inference processes. By embedding model training and inference capabilities into the network edge, edge AI stands out as a disruptive technology for 6G to seamlessly integrate sensing, communication, computation, and intelligence, thereby improving the efficiency, effectiveness, privacy, and security of 6G networks. In this paper, we shall provide our vision for scalable and trustworthy edge AI systems with integrated design of wireless communication strategies and decentralized machine learning models. New design principles of wireless networks, service-driven resource allocation optimization methods, as well as a holistic end-to-end system architecture to support edge AI will be described. Standardization, software and hardware platforms, and application scenarios are also discussed to facilitate the industrialization and commercialization of edge AI systems.
doi_str_mv 10.1109/JSAC.2021.3126076
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2610982930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9606720</ieee_id><sourcerecordid>2610982930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-c2bf9ff3d4ebb39d95f5e1123bdf3cd6ef8e74f1ea4392b6559addbe388804863</originalsourceid><addsrcrecordid>eNo9kL1OwzAYRS0EEqXwAIjFEisp_kkcmy2qSimqxEBhjRz7c3AVnGKnA29PqlZMdzn3XukgdEvJjFKiHl_fq_mMEUZnnDJBSnGGJrQoZEYIkedoQkrOM1lScYmuUtoSQvNcsgnaLGwLuIqDd9543eFVGKDrfAvBAHZ9xGL5hD998n14wIugm86HFm_AfIW-61sP6QHrYHG123Xe6GHk0jW6cLpLcHPKKfp4XmzmL9n6bbmaV-vM5IQNmWGNU85xm0PTcGVV4QqglPHGOm6sACehzB0FnXPFGlEUSlvbAJdSklwKPkX3x91d7H_2kIZ62-9jGC9rJkYrkilORooeKRP7lCK4ehf9t46_NSX1QV59kFcf5NUneWPn7tjxAPDPK0FEyQj_A4O4aq8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610982930</pqid></control><display><type>article</type><title>Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and Applications</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Letaief, Khaled B. ; Shi, Yuanming ; Lu, Jianmin ; Lu, Jianhua</creator><creatorcontrib>Letaief, Khaled B. ; Shi, Yuanming ; Lu, Jianmin ; Lu, Jianhua</creatorcontrib><description>The thriving of artificial intelligence (AI) applications is driving the further evolution of wireless networks. It has been envisioned that 6G will be transformative and will revolutionize the evolution of wireless from "connected things" to "connected intelligence". However, state-of-the-art deep learning and big data analytics based AI systems require tremendous computation and communication resources, causing significant latency, energy consumption, network congestion, and privacy leakage in both of the training and inference processes. By embedding model training and inference capabilities into the network edge, edge AI stands out as a disruptive technology for 6G to seamlessly integrate sensing, communication, computation, and intelligence, thereby improving the efficiency, effectiveness, privacy, and security of 6G networks. In this paper, we shall provide our vision for scalable and trustworthy edge AI systems with integrated design of wireless communication strategies and decentralized machine learning models. New design principles of wireless networks, service-driven resource allocation optimization methods, as well as a holistic end-to-end system architecture to support edge AI will be described. Standardization, software and hardware platforms, and application scenarios are also discussed to facilitate the industrialization and commercialization of edge AI systems.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2021.3126076</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>6G mobile communication ; Artificial intelligence ; Commercialization ; Communication ; Communication system security ; Computer architecture ; Deep learning ; edge AI ; edge inference ; edge training ; end-to-end architecture ; Energy consumption ; Evolution ; federated learning ; Inference ; large-scale optimization ; Machine learning ; Network latency ; Optimization ; over-the-air computation ; Privacy ; Resource allocation ; Sensors ; service-driven resource allocation ; Standardization ; Task analysis ; task-oriented communication ; Training ; Vision ; Wireless communications ; Wireless networks</subject><ispartof>IEEE journal on selected areas in communications, 2022-01, Vol.40 (1), p.5-36</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-c2bf9ff3d4ebb39d95f5e1123bdf3cd6ef8e74f1ea4392b6559addbe388804863</citedby><cites>FETCH-LOGICAL-c402t-c2bf9ff3d4ebb39d95f5e1123bdf3cd6ef8e74f1ea4392b6559addbe388804863</cites><orcidid>0000-0002-1418-7465 ; 0000-0003-2519-6401</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9606720$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Letaief, Khaled B.</creatorcontrib><creatorcontrib>Shi, Yuanming</creatorcontrib><creatorcontrib>Lu, Jianmin</creatorcontrib><creatorcontrib>Lu, Jianhua</creatorcontrib><title>Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and Applications</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>The thriving of artificial intelligence (AI) applications is driving the further evolution of wireless networks. It has been envisioned that 6G will be transformative and will revolutionize the evolution of wireless from "connected things" to "connected intelligence". However, state-of-the-art deep learning and big data analytics based AI systems require tremendous computation and communication resources, causing significant latency, energy consumption, network congestion, and privacy leakage in both of the training and inference processes. By embedding model training and inference capabilities into the network edge, edge AI stands out as a disruptive technology for 6G to seamlessly integrate sensing, communication, computation, and intelligence, thereby improving the efficiency, effectiveness, privacy, and security of 6G networks. In this paper, we shall provide our vision for scalable and trustworthy edge AI systems with integrated design of wireless communication strategies and decentralized machine learning models. New design principles of wireless networks, service-driven resource allocation optimization methods, as well as a holistic end-to-end system architecture to support edge AI will be described. Standardization, software and hardware platforms, and application scenarios are also discussed to facilitate the industrialization and commercialization of edge AI systems.</description><subject>6G mobile communication</subject><subject>Artificial intelligence</subject><subject>Commercialization</subject><subject>Communication</subject><subject>Communication system security</subject><subject>Computer architecture</subject><subject>Deep learning</subject><subject>edge AI</subject><subject>edge inference</subject><subject>edge training</subject><subject>end-to-end architecture</subject><subject>Energy consumption</subject><subject>Evolution</subject><subject>federated learning</subject><subject>Inference</subject><subject>large-scale optimization</subject><subject>Machine learning</subject><subject>Network latency</subject><subject>Optimization</subject><subject>over-the-air computation</subject><subject>Privacy</subject><subject>Resource allocation</subject><subject>Sensors</subject><subject>service-driven resource allocation</subject><subject>Standardization</subject><subject>Task analysis</subject><subject>task-oriented communication</subject><subject>Training</subject><subject>Vision</subject><subject>Wireless communications</subject><subject>Wireless networks</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNo9kL1OwzAYRS0EEqXwAIjFEisp_kkcmy2qSimqxEBhjRz7c3AVnGKnA29PqlZMdzn3XukgdEvJjFKiHl_fq_mMEUZnnDJBSnGGJrQoZEYIkedoQkrOM1lScYmuUtoSQvNcsgnaLGwLuIqDd9543eFVGKDrfAvBAHZ9xGL5hD998n14wIugm86HFm_AfIW-61sP6QHrYHG123Xe6GHk0jW6cLpLcHPKKfp4XmzmL9n6bbmaV-vM5IQNmWGNU85xm0PTcGVV4QqglPHGOm6sACehzB0FnXPFGlEUSlvbAJdSklwKPkX3x91d7H_2kIZ62-9jGC9rJkYrkilORooeKRP7lCK4ehf9t46_NSX1QV59kFcf5NUneWPn7tjxAPDPK0FEyQj_A4O4aq8</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Letaief, Khaled B.</creator><creator>Shi, Yuanming</creator><creator>Lu, Jianmin</creator><creator>Lu, Jianhua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1418-7465</orcidid><orcidid>https://orcid.org/0000-0003-2519-6401</orcidid></search><sort><creationdate>202201</creationdate><title>Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and Applications</title><author>Letaief, Khaled B. ; Shi, Yuanming ; Lu, Jianmin ; Lu, Jianhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-c2bf9ff3d4ebb39d95f5e1123bdf3cd6ef8e74f1ea4392b6559addbe388804863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>6G mobile communication</topic><topic>Artificial intelligence</topic><topic>Commercialization</topic><topic>Communication</topic><topic>Communication system security</topic><topic>Computer architecture</topic><topic>Deep learning</topic><topic>edge AI</topic><topic>edge inference</topic><topic>edge training</topic><topic>end-to-end architecture</topic><topic>Energy consumption</topic><topic>Evolution</topic><topic>federated learning</topic><topic>Inference</topic><topic>large-scale optimization</topic><topic>Machine learning</topic><topic>Network latency</topic><topic>Optimization</topic><topic>over-the-air computation</topic><topic>Privacy</topic><topic>Resource allocation</topic><topic>Sensors</topic><topic>service-driven resource allocation</topic><topic>Standardization</topic><topic>Task analysis</topic><topic>task-oriented communication</topic><topic>Training</topic><topic>Vision</topic><topic>Wireless communications</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Letaief, Khaled B.</creatorcontrib><creatorcontrib>Shi, Yuanming</creatorcontrib><creatorcontrib>Lu, Jianmin</creatorcontrib><creatorcontrib>Lu, Jianhua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Letaief, Khaled B.</au><au>Shi, Yuanming</au><au>Lu, Jianmin</au><au>Lu, Jianhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and Applications</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2022-01</date><risdate>2022</risdate><volume>40</volume><issue>1</issue><spage>5</spage><epage>36</epage><pages>5-36</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>The thriving of artificial intelligence (AI) applications is driving the further evolution of wireless networks. It has been envisioned that 6G will be transformative and will revolutionize the evolution of wireless from "connected things" to "connected intelligence". However, state-of-the-art deep learning and big data analytics based AI systems require tremendous computation and communication resources, causing significant latency, energy consumption, network congestion, and privacy leakage in both of the training and inference processes. By embedding model training and inference capabilities into the network edge, edge AI stands out as a disruptive technology for 6G to seamlessly integrate sensing, communication, computation, and intelligence, thereby improving the efficiency, effectiveness, privacy, and security of 6G networks. In this paper, we shall provide our vision for scalable and trustworthy edge AI systems with integrated design of wireless communication strategies and decentralized machine learning models. New design principles of wireless networks, service-driven resource allocation optimization methods, as well as a holistic end-to-end system architecture to support edge AI will be described. Standardization, software and hardware platforms, and application scenarios are also discussed to facilitate the industrialization and commercialization of edge AI systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2021.3126076</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-1418-7465</orcidid><orcidid>https://orcid.org/0000-0003-2519-6401</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0733-8716
ispartof IEEE journal on selected areas in communications, 2022-01, Vol.40 (1), p.5-36
issn 0733-8716
1558-0008
language eng
recordid cdi_proquest_journals_2610982930
source IEEE Electronic Library (IEL) Journals
subjects 6G mobile communication
Artificial intelligence
Commercialization
Communication
Communication system security
Computer architecture
Deep learning
edge AI
edge inference
edge training
end-to-end architecture
Energy consumption
Evolution
federated learning
Inference
large-scale optimization
Machine learning
Network latency
Optimization
over-the-air computation
Privacy
Resource allocation
Sensors
service-driven resource allocation
Standardization
Task analysis
task-oriented communication
Training
Vision
Wireless communications
Wireless networks
title Edge Artificial Intelligence for 6G: Vision, Enabling Technologies, and Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A53%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Edge%20Artificial%20Intelligence%20for%206G:%20Vision,%20Enabling%20Technologies,%20and%20Applications&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Letaief,%20Khaled%20B.&rft.date=2022-01&rft.volume=40&rft.issue=1&rft.spage=5&rft.epage=36&rft.pages=5-36&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2021.3126076&rft_dat=%3Cproquest_ieee_%3E2610982930%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-c2bf9ff3d4ebb39d95f5e1123bdf3cd6ef8e74f1ea4392b6559addbe388804863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2610982930&rft_id=info:pmid/&rft_ieee_id=9606720&rfr_iscdi=true