Loading…

Solid-State NMR Free Induction Decay, Simulated by the System of Classical Magnetic Moments and Quantum Correlations

In the past decade, nuclear magnetic resonance (NMR) has been actively used to study the basic principles of quantum computers. It is assumed that quantum correlations play a significant role in their performance. They exist at both low and high temperatures. At the same time, the time correlation f...

Full description

Saved in:
Bibliographic Details
Published in:Russian journal of physical chemistry. B 2021-09, Vol.15 (5), p.839-847
Main Authors: Lundin, A. A., Zobov, V. E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-b76873ce9769b09ddce84be26b2223eff828f9945d8ceed7306a490438df5e3e3
cites cdi_FETCH-LOGICAL-c316t-b76873ce9769b09ddce84be26b2223eff828f9945d8ceed7306a490438df5e3e3
container_end_page 847
container_issue 5
container_start_page 839
container_title Russian journal of physical chemistry. B
container_volume 15
creator Lundin, A. A.
Zobov, V. E.
description In the past decade, nuclear magnetic resonance (NMR) has been actively used to study the basic principles of quantum computers. It is assumed that quantum correlations play a significant role in their performance. They exist at both low and high temperatures. At the same time, the time correlation functions of nuclear spin systems of solids determine the observed signals in traditional NMR implementations. The separation of such signals into quantum and classical components has not previously been carried out and will be performed in this study for the most important of the correlational functions observed in magnetic resonance: the free induction decay (FID).
doi_str_mv 10.1134/S1990793121050079
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2611150089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2611150089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b76873ce9769b09ddce84be26b2223eff828f9945d8ceed7306a490438df5e3e3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssSXgR5rES1QoILUgCKwjx56UVIldbGeRv8dVESwQqxmNzj0jXYTOKbmilKfXJRWC5IJTRsmMxO0ATXanJBeMH_7snB6jE-83hGQsF2SCQmm7VidlkAHw0-oVLxwAfjR6UKG1Bt-CkuMlLtt-6CKicT3i8AG4HH2AHtsGzzvpfatkh1dybSC0Cq9sDyZ4LI3GL4M0Yejx3DoHURGl_hQdNbLzcPY9p-h9cfc2f0iWz_eP85tlojjNQlLnWZFzBSLPRE2E1gqKtAaW1YwxDk1TsKIRIp3pQgHonJNMpoKkvNDNDDjwKbrYe7fOfg7gQ7WxgzPxZcUySmksqhCRontKOeu9g6bauraXbqwoqXblVn_KjRm2z_jImjW4X_P_oS8vqHux</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2611150089</pqid></control><display><type>article</type><title>Solid-State NMR Free Induction Decay, Simulated by the System of Classical Magnetic Moments and Quantum Correlations</title><source>Springer Link</source><creator>Lundin, A. A. ; Zobov, V. E.</creator><creatorcontrib>Lundin, A. A. ; Zobov, V. E.</creatorcontrib><description>In the past decade, nuclear magnetic resonance (NMR) has been actively used to study the basic principles of quantum computers. It is assumed that quantum correlations play a significant role in their performance. They exist at both low and high temperatures. At the same time, the time correlation functions of nuclear spin systems of solids determine the observed signals in traditional NMR implementations. The separation of such signals into quantum and classical components has not previously been carried out and will be performed in this study for the most important of the correlational functions observed in magnetic resonance: the free induction decay (FID).</description><identifier>ISSN: 1990-7931</identifier><identifier>EISSN: 1990-7923</identifier><identifier>DOI: 10.1134/S1990793121050079</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Chemistry ; Chemistry and Materials Science ; Decay ; Electrical and Magnetic Properties of Materials ; High temperature ; Magnetic induction ; Magnetic moments ; NMR ; Nuclear magnetic resonance ; Nuclear spin ; Physical Chemistry ; Quantum computers ; Time correlation functions</subject><ispartof>Russian journal of physical chemistry. B, 2021-09, Vol.15 (5), p.839-847</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 1990-7931, Russian Journal of Physical Chemistry B, 2021, Vol. 15, No. 5, pp. 839–847. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Khimicheskaya Fizika, 2021, Vol. 40, No. 9, pp. 41–49.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b76873ce9769b09ddce84be26b2223eff828f9945d8ceed7306a490438df5e3e3</citedby><cites>FETCH-LOGICAL-c316t-b76873ce9769b09ddce84be26b2223eff828f9945d8ceed7306a490438df5e3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Lundin, A. A.</creatorcontrib><creatorcontrib>Zobov, V. E.</creatorcontrib><title>Solid-State NMR Free Induction Decay, Simulated by the System of Classical Magnetic Moments and Quantum Correlations</title><title>Russian journal of physical chemistry. B</title><addtitle>Russ. J. Phys. Chem. B</addtitle><description>In the past decade, nuclear magnetic resonance (NMR) has been actively used to study the basic principles of quantum computers. It is assumed that quantum correlations play a significant role in their performance. They exist at both low and high temperatures. At the same time, the time correlation functions of nuclear spin systems of solids determine the observed signals in traditional NMR implementations. The separation of such signals into quantum and classical components has not previously been carried out and will be performed in this study for the most important of the correlational functions observed in magnetic resonance: the free induction decay (FID).</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Decay</subject><subject>Electrical and Magnetic Properties of Materials</subject><subject>High temperature</subject><subject>Magnetic induction</subject><subject>Magnetic moments</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear spin</subject><subject>Physical Chemistry</subject><subject>Quantum computers</subject><subject>Time correlation functions</subject><issn>1990-7931</issn><issn>1990-7923</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewssSXgR5rES1QoILUgCKwjx56UVIldbGeRv8dVESwQqxmNzj0jXYTOKbmilKfXJRWC5IJTRsmMxO0ATXanJBeMH_7snB6jE-83hGQsF2SCQmm7VidlkAHw0-oVLxwAfjR6UKG1Bt-CkuMlLtt-6CKicT3i8AG4HH2AHtsGzzvpfatkh1dybSC0Cq9sDyZ4LI3GL4M0Yejx3DoHURGl_hQdNbLzcPY9p-h9cfc2f0iWz_eP85tlojjNQlLnWZFzBSLPRE2E1gqKtAaW1YwxDk1TsKIRIp3pQgHonJNMpoKkvNDNDDjwKbrYe7fOfg7gQ7WxgzPxZcUySmksqhCRontKOeu9g6bauraXbqwoqXblVn_KjRm2z_jImjW4X_P_oS8vqHux</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Lundin, A. A.</creator><creator>Zobov, V. E.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>Solid-State NMR Free Induction Decay, Simulated by the System of Classical Magnetic Moments and Quantum Correlations</title><author>Lundin, A. A. ; Zobov, V. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b76873ce9769b09ddce84be26b2223eff828f9945d8ceed7306a490438df5e3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Decay</topic><topic>Electrical and Magnetic Properties of Materials</topic><topic>High temperature</topic><topic>Magnetic induction</topic><topic>Magnetic moments</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear spin</topic><topic>Physical Chemistry</topic><topic>Quantum computers</topic><topic>Time correlation functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lundin, A. A.</creatorcontrib><creatorcontrib>Zobov, V. E.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lundin, A. A.</au><au>Zobov, V. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid-State NMR Free Induction Decay, Simulated by the System of Classical Magnetic Moments and Quantum Correlations</atitle><jtitle>Russian journal of physical chemistry. B</jtitle><stitle>Russ. J. Phys. Chem. B</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>15</volume><issue>5</issue><spage>839</spage><epage>847</epage><pages>839-847</pages><issn>1990-7931</issn><eissn>1990-7923</eissn><abstract>In the past decade, nuclear magnetic resonance (NMR) has been actively used to study the basic principles of quantum computers. It is assumed that quantum correlations play a significant role in their performance. They exist at both low and high temperatures. At the same time, the time correlation functions of nuclear spin systems of solids determine the observed signals in traditional NMR implementations. The separation of such signals into quantum and classical components has not previously been carried out and will be performed in this study for the most important of the correlational functions observed in magnetic resonance: the free induction decay (FID).</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1990793121050079</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1990-7931
ispartof Russian journal of physical chemistry. B, 2021-09, Vol.15 (5), p.839-847
issn 1990-7931
1990-7923
language eng
recordid cdi_proquest_journals_2611150089
source Springer Link
subjects Chemistry
Chemistry and Materials Science
Decay
Electrical and Magnetic Properties of Materials
High temperature
Magnetic induction
Magnetic moments
NMR
Nuclear magnetic resonance
Nuclear spin
Physical Chemistry
Quantum computers
Time correlation functions
title Solid-State NMR Free Induction Decay, Simulated by the System of Classical Magnetic Moments and Quantum Correlations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A38%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid-State%20NMR%20Free%20Induction%20Decay,%20Simulated%20by%20the%20System%20of%20Classical%20Magnetic%20Moments%20and%20Quantum%20Correlations&rft.jtitle=Russian%20journal%20of%20physical%20chemistry.%20B&rft.au=Lundin,%20A.%20A.&rft.date=2021-09-01&rft.volume=15&rft.issue=5&rft.spage=839&rft.epage=847&rft.pages=839-847&rft.issn=1990-7931&rft.eissn=1990-7923&rft_id=info:doi/10.1134/S1990793121050079&rft_dat=%3Cproquest_cross%3E2611150089%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-b76873ce9769b09ddce84be26b2223eff828f9945d8ceed7306a490438df5e3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2611150089&rft_id=info:pmid/&rfr_iscdi=true