Loading…
Solid-State NMR Free Induction Decay, Simulated by the System of Classical Magnetic Moments and Quantum Correlations
In the past decade, nuclear magnetic resonance (NMR) has been actively used to study the basic principles of quantum computers. It is assumed that quantum correlations play a significant role in their performance. They exist at both low and high temperatures. At the same time, the time correlation f...
Saved in:
Published in: | Russian journal of physical chemistry. B 2021-09, Vol.15 (5), p.839-847 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-b76873ce9769b09ddce84be26b2223eff828f9945d8ceed7306a490438df5e3e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-b76873ce9769b09ddce84be26b2223eff828f9945d8ceed7306a490438df5e3e3 |
container_end_page | 847 |
container_issue | 5 |
container_start_page | 839 |
container_title | Russian journal of physical chemistry. B |
container_volume | 15 |
creator | Lundin, A. A. Zobov, V. E. |
description | In the past decade, nuclear magnetic resonance (NMR) has been actively used to study the basic principles of quantum computers. It is assumed that quantum correlations play a significant role in their performance. They exist at both low and high temperatures. At the same time, the time correlation functions of nuclear spin systems of solids determine the observed signals in traditional NMR implementations. The separation of such signals into quantum and classical components has not previously been carried out and will be performed in this study for the most important of the correlational functions observed in magnetic resonance: the free induction decay (FID). |
doi_str_mv | 10.1134/S1990793121050079 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2611150089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2611150089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-b76873ce9769b09ddce84be26b2223eff828f9945d8ceed7306a490438df5e3e3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssSXgR5rES1QoILUgCKwjx56UVIldbGeRv8dVESwQqxmNzj0jXYTOKbmilKfXJRWC5IJTRsmMxO0ATXanJBeMH_7snB6jE-83hGQsF2SCQmm7VidlkAHw0-oVLxwAfjR6UKG1Bt-CkuMlLtt-6CKicT3i8AG4HH2AHtsGzzvpfatkh1dybSC0Cq9sDyZ4LI3GL4M0Yejx3DoHURGl_hQdNbLzcPY9p-h9cfc2f0iWz_eP85tlojjNQlLnWZFzBSLPRE2E1gqKtAaW1YwxDk1TsKIRIp3pQgHonJNMpoKkvNDNDDjwKbrYe7fOfg7gQ7WxgzPxZcUySmksqhCRontKOeu9g6bauraXbqwoqXblVn_KjRm2z_jImjW4X_P_oS8vqHux</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2611150089</pqid></control><display><type>article</type><title>Solid-State NMR Free Induction Decay, Simulated by the System of Classical Magnetic Moments and Quantum Correlations</title><source>Springer Link</source><creator>Lundin, A. A. ; Zobov, V. E.</creator><creatorcontrib>Lundin, A. A. ; Zobov, V. E.</creatorcontrib><description>In the past decade, nuclear magnetic resonance (NMR) has been actively used to study the basic principles of quantum computers. It is assumed that quantum correlations play a significant role in their performance. They exist at both low and high temperatures. At the same time, the time correlation functions of nuclear spin systems of solids determine the observed signals in traditional NMR implementations. The separation of such signals into quantum and classical components has not previously been carried out and will be performed in this study for the most important of the correlational functions observed in magnetic resonance: the free induction decay (FID).</description><identifier>ISSN: 1990-7931</identifier><identifier>EISSN: 1990-7923</identifier><identifier>DOI: 10.1134/S1990793121050079</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Chemistry ; Chemistry and Materials Science ; Decay ; Electrical and Magnetic Properties of Materials ; High temperature ; Magnetic induction ; Magnetic moments ; NMR ; Nuclear magnetic resonance ; Nuclear spin ; Physical Chemistry ; Quantum computers ; Time correlation functions</subject><ispartof>Russian journal of physical chemistry. B, 2021-09, Vol.15 (5), p.839-847</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 1990-7931, Russian Journal of Physical Chemistry B, 2021, Vol. 15, No. 5, pp. 839–847. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Khimicheskaya Fizika, 2021, Vol. 40, No. 9, pp. 41–49.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-b76873ce9769b09ddce84be26b2223eff828f9945d8ceed7306a490438df5e3e3</citedby><cites>FETCH-LOGICAL-c316t-b76873ce9769b09ddce84be26b2223eff828f9945d8ceed7306a490438df5e3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Lundin, A. A.</creatorcontrib><creatorcontrib>Zobov, V. E.</creatorcontrib><title>Solid-State NMR Free Induction Decay, Simulated by the System of Classical Magnetic Moments and Quantum Correlations</title><title>Russian journal of physical chemistry. B</title><addtitle>Russ. J. Phys. Chem. B</addtitle><description>In the past decade, nuclear magnetic resonance (NMR) has been actively used to study the basic principles of quantum computers. It is assumed that quantum correlations play a significant role in their performance. They exist at both low and high temperatures. At the same time, the time correlation functions of nuclear spin systems of solids determine the observed signals in traditional NMR implementations. The separation of such signals into quantum and classical components has not previously been carried out and will be performed in this study for the most important of the correlational functions observed in magnetic resonance: the free induction decay (FID).</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Decay</subject><subject>Electrical and Magnetic Properties of Materials</subject><subject>High temperature</subject><subject>Magnetic induction</subject><subject>Magnetic moments</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nuclear spin</subject><subject>Physical Chemistry</subject><subject>Quantum computers</subject><subject>Time correlation functions</subject><issn>1990-7931</issn><issn>1990-7923</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewssSXgR5rES1QoILUgCKwjx56UVIldbGeRv8dVESwQqxmNzj0jXYTOKbmilKfXJRWC5IJTRsmMxO0ATXanJBeMH_7snB6jE-83hGQsF2SCQmm7VidlkAHw0-oVLxwAfjR6UKG1Bt-CkuMlLtt-6CKicT3i8AG4HH2AHtsGzzvpfatkh1dybSC0Cq9sDyZ4LI3GL4M0Yejx3DoHURGl_hQdNbLzcPY9p-h9cfc2f0iWz_eP85tlojjNQlLnWZFzBSLPRE2E1gqKtAaW1YwxDk1TsKIRIp3pQgHonJNMpoKkvNDNDDjwKbrYe7fOfg7gQ7WxgzPxZcUySmksqhCRontKOeu9g6bauraXbqwoqXblVn_KjRm2z_jImjW4X_P_oS8vqHux</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Lundin, A. A.</creator><creator>Zobov, V. E.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>Solid-State NMR Free Induction Decay, Simulated by the System of Classical Magnetic Moments and Quantum Correlations</title><author>Lundin, A. A. ; Zobov, V. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-b76873ce9769b09ddce84be26b2223eff828f9945d8ceed7306a490438df5e3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Decay</topic><topic>Electrical and Magnetic Properties of Materials</topic><topic>High temperature</topic><topic>Magnetic induction</topic><topic>Magnetic moments</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nuclear spin</topic><topic>Physical Chemistry</topic><topic>Quantum computers</topic><topic>Time correlation functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lundin, A. A.</creatorcontrib><creatorcontrib>Zobov, V. E.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lundin, A. A.</au><au>Zobov, V. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid-State NMR Free Induction Decay, Simulated by the System of Classical Magnetic Moments and Quantum Correlations</atitle><jtitle>Russian journal of physical chemistry. B</jtitle><stitle>Russ. J. Phys. Chem. B</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>15</volume><issue>5</issue><spage>839</spage><epage>847</epage><pages>839-847</pages><issn>1990-7931</issn><eissn>1990-7923</eissn><abstract>In the past decade, nuclear magnetic resonance (NMR) has been actively used to study the basic principles of quantum computers. It is assumed that quantum correlations play a significant role in their performance. They exist at both low and high temperatures. At the same time, the time correlation functions of nuclear spin systems of solids determine the observed signals in traditional NMR implementations. The separation of such signals into quantum and classical components has not previously been carried out and will be performed in this study for the most important of the correlational functions observed in magnetic resonance: the free induction decay (FID).</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1990793121050079</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1990-7931 |
ispartof | Russian journal of physical chemistry. B, 2021-09, Vol.15 (5), p.839-847 |
issn | 1990-7931 1990-7923 |
language | eng |
recordid | cdi_proquest_journals_2611150089 |
source | Springer Link |
subjects | Chemistry Chemistry and Materials Science Decay Electrical and Magnetic Properties of Materials High temperature Magnetic induction Magnetic moments NMR Nuclear magnetic resonance Nuclear spin Physical Chemistry Quantum computers Time correlation functions |
title | Solid-State NMR Free Induction Decay, Simulated by the System of Classical Magnetic Moments and Quantum Correlations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A38%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid-State%20NMR%20Free%20Induction%20Decay,%20Simulated%20by%20the%20System%20of%20Classical%20Magnetic%20Moments%20and%20Quantum%20Correlations&rft.jtitle=Russian%20journal%20of%20physical%20chemistry.%20B&rft.au=Lundin,%20A.%20A.&rft.date=2021-09-01&rft.volume=15&rft.issue=5&rft.spage=839&rft.epage=847&rft.pages=839-847&rft.issn=1990-7931&rft.eissn=1990-7923&rft_id=info:doi/10.1134/S1990793121050079&rft_dat=%3Cproquest_cross%3E2611150089%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-b76873ce9769b09ddce84be26b2223eff828f9945d8ceed7306a490438df5e3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2611150089&rft_id=info:pmid/&rfr_iscdi=true |