Loading…

LB-DDQN for Handover Decision in Satellite-Terrestrial Integrated Networks

The frequent handover and handover failure problems obviously degrade the QoS of mobile users in the terrestrial segment (e.g., cellular networks) of satellite-terrestrial integrated networks (STINs). And the traditional handover decision methods rely on the historical data and produce the training...

Full description

Saved in:
Bibliographic Details
Published in:Wireless communications and mobile computing 2021, Vol.2021 (1)
Main Authors: Wu, Dong-Fang, Huang, Chuanhe, Yin, Yabo, Huang, Shidong, Ashraf, M. Wasim Abbas, Guo, Qianqian, Zhang, Lin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The frequent handover and handover failure problems obviously degrade the QoS of mobile users in the terrestrial segment (e.g., cellular networks) of satellite-terrestrial integrated networks (STINs). And the traditional handover decision methods rely on the historical data and produce the training cost. To solve these problems, the deep reinforcement learning- (DRL-) based handover decision methods are used in the handover management. In the existing DQN-based handover decision method, the overestimates of DQN method continue. Moreover, the current handover decision methods adopt the greedy strategy which lead to the load imbalance problem in base stations. Considering the handover decision and load imbalance problems, we proposed a load balancing-based double deep Q-network (LB-DDQN) method for handover decision. In the proposed load balancing strategy, we define a load coefficient to express the conditions of loading in each base station. The supplementary load balancing evaluation function evaluates the performance of this load balancing strategy. As the selected basic method, the DDQN method adopts the target Q-network and main Q-network to deal with the overestimate problem of the DQN method. Different from joint optimization, we input the load reward into the designed reward function. And the load coefficient becomes one handover decision factor. In our research, the handover decision and load imbalance problems are solved effectively and jointly. The experimental results show that the proposed LB-DDQN handover decision method obtains good performance in the handover decision. Moreover, the access of mobile users becomes more balancing and the throughput of network is also increased.
ISSN:1530-8669
1530-8677
DOI:10.1155/2021/5871114