Loading…

3D Marchenko applications: implementation and examples

ABSTRACT We implement the 3D Marchenko equations to retrieve responses to virtual sources inside the subsurface. For this, we require reflection data at the surface of the Earth that contain no free‐surface multiples and are densely sampled in space. The required 3D reflection data volume is very la...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical Prospecting 2022-01, Vol.70 (1), p.35-56
Main Authors: Brackenhoff, Joeri, Thorbecke, Jan, Meles, Giovanni, Koehne, Victor, Barrera, Diego, Wapenaar, Kees
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3561-49a30b476e331ae7b9fc3d266487cb7656e01714e4a81769d2958d71c68be0b43
cites cdi_FETCH-LOGICAL-c3561-49a30b476e331ae7b9fc3d266487cb7656e01714e4a81769d2958d71c68be0b43
container_end_page 56
container_issue 1
container_start_page 35
container_title Geophysical Prospecting
container_volume 70
creator Brackenhoff, Joeri
Thorbecke, Jan
Meles, Giovanni
Koehne, Victor
Barrera, Diego
Wapenaar, Kees
description ABSTRACT We implement the 3D Marchenko equations to retrieve responses to virtual sources inside the subsurface. For this, we require reflection data at the surface of the Earth that contain no free‐surface multiples and are densely sampled in space. The required 3D reflection data volume is very large and solving the Marchenko equations requires a significant amount of computational cost. To limit the cost, we apply floating point compression to the reflection data to reduce their volume and the loading time from disk. We apply the Marchenko implementation to numerical reflection data to retrieve accurate Green's functions inside the medium and use these reflection data to apply imaging. This requires the simulation of many virtual source points, which we circumvent using virtual plane‐wave sources instead of virtual point sources. Through this method, we retrieve the angle‐dependent response of a source from a depth level rather than of a point. We use these responses to obtain angle‐dependent structural images of the subsurface, free of contamination from wrongly imaged internal multiples. These images have less lateral resolution than those obtained using virtual point sources, but are more efficiently retrieved.
doi_str_mv 10.1111/1365-2478.13151
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2611575093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2611575093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3561-49a30b476e331ae7b9fc3d266487cb7656e01714e4a81769d2958d71c68be0b43</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRMFbPXgOe0-5kvxJvUm0VKoroedlsJpiaL3dTtP_epBGvzmXg5X1m4CHkEugchlkAkyKKuUrmwEDAEQn-kmMSUAoySmgsTsmZ91tKGRWCB0Sy2_DROPuOzUcbmq6rSmv6sm38dVjWXYU1Nv0hCE2Th_htxtCfk5PCVB4vfveMvK3uXpf30eZp_bC82USWCQkRTw2jGVcSGQODKksLy_JYSp4omykpJFJQwJGbBJRM8zgVSa7AyiTDAWQzcjXd7Vz7uUPf6227c83wUscSQChBUza0FlPLutZ7h4XuXFkbt9dA9ShHjyr0qEIf5AyEmIivssL9f3W9fn6ZuB9PQmP_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2611575093</pqid></control><display><type>article</type><title>3D Marchenko applications: implementation and examples</title><source>Wiley</source><creator>Brackenhoff, Joeri ; Thorbecke, Jan ; Meles, Giovanni ; Koehne, Victor ; Barrera, Diego ; Wapenaar, Kees</creator><creatorcontrib>Brackenhoff, Joeri ; Thorbecke, Jan ; Meles, Giovanni ; Koehne, Victor ; Barrera, Diego ; Wapenaar, Kees</creatorcontrib><description>ABSTRACT We implement the 3D Marchenko equations to retrieve responses to virtual sources inside the subsurface. For this, we require reflection data at the surface of the Earth that contain no free‐surface multiples and are densely sampled in space. The required 3D reflection data volume is very large and solving the Marchenko equations requires a significant amount of computational cost. To limit the cost, we apply floating point compression to the reflection data to reduce their volume and the loading time from disk. We apply the Marchenko implementation to numerical reflection data to retrieve accurate Green's functions inside the medium and use these reflection data to apply imaging. This requires the simulation of many virtual source points, which we circumvent using virtual plane‐wave sources instead of virtual point sources. Through this method, we retrieve the angle‐dependent response of a source from a depth level rather than of a point. We use these responses to obtain angle‐dependent structural images of the subsurface, free of contamination from wrongly imaged internal multiples. These images have less lateral resolution than those obtained using virtual point sources, but are more efficiently retrieved.</description><identifier>ISSN: 0016-8025</identifier><identifier>EISSN: 1365-2478</identifier><identifier>DOI: 10.1111/1365-2478.13151</identifier><language>eng</language><publisher>Houten: Wiley Subscription Services, Inc</publisher><subject>Compression ; Computing costs ; Earth surface ; Floating point arithmetic ; Green's function ; Green's functions ; Mathematical analysis ; Numerical study ; Reflection ; Seismics ; Signal processing</subject><ispartof>Geophysical Prospecting, 2022-01, Vol.70 (1), p.35-56</ispartof><rights>2021 The Authors. published by John Wiley &amp; Sons Ltd on behalf of European Association of Geoscientists &amp; Engineers</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3561-49a30b476e331ae7b9fc3d266487cb7656e01714e4a81769d2958d71c68be0b43</citedby><cites>FETCH-LOGICAL-c3561-49a30b476e331ae7b9fc3d266487cb7656e01714e4a81769d2958d71c68be0b43</cites><orcidid>0000-0002-2960-9587 ; 0000-0003-1228-7283 ; 0000-0002-1620-8282 ; 0000-0001-7697-1194 ; 0000-0002-5219-0868 ; 0000-0002-7338-1735</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Brackenhoff, Joeri</creatorcontrib><creatorcontrib>Thorbecke, Jan</creatorcontrib><creatorcontrib>Meles, Giovanni</creatorcontrib><creatorcontrib>Koehne, Victor</creatorcontrib><creatorcontrib>Barrera, Diego</creatorcontrib><creatorcontrib>Wapenaar, Kees</creatorcontrib><title>3D Marchenko applications: implementation and examples</title><title>Geophysical Prospecting</title><description>ABSTRACT We implement the 3D Marchenko equations to retrieve responses to virtual sources inside the subsurface. For this, we require reflection data at the surface of the Earth that contain no free‐surface multiples and are densely sampled in space. The required 3D reflection data volume is very large and solving the Marchenko equations requires a significant amount of computational cost. To limit the cost, we apply floating point compression to the reflection data to reduce their volume and the loading time from disk. We apply the Marchenko implementation to numerical reflection data to retrieve accurate Green's functions inside the medium and use these reflection data to apply imaging. This requires the simulation of many virtual source points, which we circumvent using virtual plane‐wave sources instead of virtual point sources. Through this method, we retrieve the angle‐dependent response of a source from a depth level rather than of a point. We use these responses to obtain angle‐dependent structural images of the subsurface, free of contamination from wrongly imaged internal multiples. These images have less lateral resolution than those obtained using virtual point sources, but are more efficiently retrieved.</description><subject>Compression</subject><subject>Computing costs</subject><subject>Earth surface</subject><subject>Floating point arithmetic</subject><subject>Green's function</subject><subject>Green's functions</subject><subject>Mathematical analysis</subject><subject>Numerical study</subject><subject>Reflection</subject><subject>Seismics</subject><subject>Signal processing</subject><issn>0016-8025</issn><issn>1365-2478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkE1Lw0AQhhdRMFbPXgOe0-5kvxJvUm0VKoroedlsJpiaL3dTtP_epBGvzmXg5X1m4CHkEugchlkAkyKKuUrmwEDAEQn-kmMSUAoySmgsTsmZ91tKGRWCB0Sy2_DROPuOzUcbmq6rSmv6sm38dVjWXYU1Nv0hCE2Th_htxtCfk5PCVB4vfveMvK3uXpf30eZp_bC82USWCQkRTw2jGVcSGQODKksLy_JYSp4omykpJFJQwJGbBJRM8zgVSa7AyiTDAWQzcjXd7Vz7uUPf6227c83wUscSQChBUza0FlPLutZ7h4XuXFkbt9dA9ShHjyr0qEIf5AyEmIivssL9f3W9fn6ZuB9PQmP_</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Brackenhoff, Joeri</creator><creator>Thorbecke, Jan</creator><creator>Meles, Giovanni</creator><creator>Koehne, Victor</creator><creator>Barrera, Diego</creator><creator>Wapenaar, Kees</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-2960-9587</orcidid><orcidid>https://orcid.org/0000-0003-1228-7283</orcidid><orcidid>https://orcid.org/0000-0002-1620-8282</orcidid><orcidid>https://orcid.org/0000-0001-7697-1194</orcidid><orcidid>https://orcid.org/0000-0002-5219-0868</orcidid><orcidid>https://orcid.org/0000-0002-7338-1735</orcidid></search><sort><creationdate>202201</creationdate><title>3D Marchenko applications: implementation and examples</title><author>Brackenhoff, Joeri ; Thorbecke, Jan ; Meles, Giovanni ; Koehne, Victor ; Barrera, Diego ; Wapenaar, Kees</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3561-49a30b476e331ae7b9fc3d266487cb7656e01714e4a81769d2958d71c68be0b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Compression</topic><topic>Computing costs</topic><topic>Earth surface</topic><topic>Floating point arithmetic</topic><topic>Green's function</topic><topic>Green's functions</topic><topic>Mathematical analysis</topic><topic>Numerical study</topic><topic>Reflection</topic><topic>Seismics</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brackenhoff, Joeri</creatorcontrib><creatorcontrib>Thorbecke, Jan</creatorcontrib><creatorcontrib>Meles, Giovanni</creatorcontrib><creatorcontrib>Koehne, Victor</creatorcontrib><creatorcontrib>Barrera, Diego</creatorcontrib><creatorcontrib>Wapenaar, Kees</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geophysical Prospecting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brackenhoff, Joeri</au><au>Thorbecke, Jan</au><au>Meles, Giovanni</au><au>Koehne, Victor</au><au>Barrera, Diego</au><au>Wapenaar, Kees</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Marchenko applications: implementation and examples</atitle><jtitle>Geophysical Prospecting</jtitle><date>2022-01</date><risdate>2022</risdate><volume>70</volume><issue>1</issue><spage>35</spage><epage>56</epage><pages>35-56</pages><issn>0016-8025</issn><eissn>1365-2478</eissn><abstract>ABSTRACT We implement the 3D Marchenko equations to retrieve responses to virtual sources inside the subsurface. For this, we require reflection data at the surface of the Earth that contain no free‐surface multiples and are densely sampled in space. The required 3D reflection data volume is very large and solving the Marchenko equations requires a significant amount of computational cost. To limit the cost, we apply floating point compression to the reflection data to reduce their volume and the loading time from disk. We apply the Marchenko implementation to numerical reflection data to retrieve accurate Green's functions inside the medium and use these reflection data to apply imaging. This requires the simulation of many virtual source points, which we circumvent using virtual plane‐wave sources instead of virtual point sources. Through this method, we retrieve the angle‐dependent response of a source from a depth level rather than of a point. We use these responses to obtain angle‐dependent structural images of the subsurface, free of contamination from wrongly imaged internal multiples. These images have less lateral resolution than those obtained using virtual point sources, but are more efficiently retrieved.</abstract><cop>Houten</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/1365-2478.13151</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-2960-9587</orcidid><orcidid>https://orcid.org/0000-0003-1228-7283</orcidid><orcidid>https://orcid.org/0000-0002-1620-8282</orcidid><orcidid>https://orcid.org/0000-0001-7697-1194</orcidid><orcidid>https://orcid.org/0000-0002-5219-0868</orcidid><orcidid>https://orcid.org/0000-0002-7338-1735</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-8025
ispartof Geophysical Prospecting, 2022-01, Vol.70 (1), p.35-56
issn 0016-8025
1365-2478
language eng
recordid cdi_proquest_journals_2611575093
source Wiley
subjects Compression
Computing costs
Earth surface
Floating point arithmetic
Green's function
Green's functions
Mathematical analysis
Numerical study
Reflection
Seismics
Signal processing
title 3D Marchenko applications: implementation and examples
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A38%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Marchenko%20applications:%20implementation%20and%20examples&rft.jtitle=Geophysical%20Prospecting&rft.au=Brackenhoff,%20Joeri&rft.date=2022-01&rft.volume=70&rft.issue=1&rft.spage=35&rft.epage=56&rft.pages=35-56&rft.issn=0016-8025&rft.eissn=1365-2478&rft_id=info:doi/10.1111/1365-2478.13151&rft_dat=%3Cproquest_cross%3E2611575093%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3561-49a30b476e331ae7b9fc3d266487cb7656e01714e4a81769d2958d71c68be0b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2611575093&rft_id=info:pmid/&rfr_iscdi=true