Loading…
Optimization of Microwave-Assisted Extraction of Polyphenols from Lemon Myrtle: Comparison of Modern and Conventional Extraction Techniques Based on Bioactivity and Total Polyphenols in Dry Extracts
The aromatic herb lemon myrtle is a good source of polyphenols, with high antioxidant and antimicrobial capacity. In this study, the green extraction technique microwave-assisted extraction (MAE) was applied and the extraction parameters were optimized using response surface methodology (RSM) to max...
Saved in:
Published in: | Processes 2021-12, Vol.9 (12), p.2212 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aromatic herb lemon myrtle is a good source of polyphenols, with high antioxidant and antimicrobial capacity. In this study, the green extraction technique microwave-assisted extraction (MAE) was applied and the extraction parameters were optimized using response surface methodology (RSM) to maximize the extraction yield of phenolic compound and antioxidant properties. Then, it was compared with other popular novel and conventional extraction techniques including ultrasound-assisted extraction (UAE) and shaking water bath (SWB) to identify the most effective technique for extraction of phenolic compounds from lemon myrtle. The results showed that the MAE parameters including radiation time, power, and sample to solvent ratio had a significant influence on the extraction yield of phenolic compounds and antioxidant capacity. The optimal MAE conditions were radiation time of 6 min, microwave power of 630 W, and sample to solvent ratio of 6 g/100 mL. Under optimal conditions, MAE dry extract had similar levels of total phenolic compounds (406.67 ± 8.57 mg GAE/g DW), flavonoids (384.57 ± 2.74 mg CE/g DW), proanthocyanidins (336.54 ± 7.09 mg CE/g DW), antioxidant properties, and antibacterial properties against (Staphylococcus lugdunensis and Bacillus cereus) with the other two methods. However, MAE is eight-times quicker and requires six-times less solvent volume as compared to UAE and SWB. Therefore, MAE is recommended for the extraction of polyphenols from lemon myrtle leaf. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr9122212 |