Loading…
Optimization, Kinetics, Thermodynamic and Arrhenius Model of the Removal of Ciprofloxacin by Internal Electrolysis with Fe-Cu and Fe-C Materials
The ciprofloxacin (CIP) removal ability of a Fe-Cu electrolytic material was examined with respect to pH (2–9), time (15–150 min), shaking speed (100–250 rpm), material mass (0.2–3 g/L), temperature (298, 308, 323) and initial CIP concentration (30–200 mg/L). The Fe-Cu electrolytic materials were fa...
Saved in:
Published in: | Processes 2021-12, Vol.9 (12), p.2110 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The ciprofloxacin (CIP) removal ability of a Fe-Cu electrolytic material was examined with respect to pH (2–9), time (15–150 min), shaking speed (100–250 rpm), material mass (0.2–3 g/L), temperature (298, 308, 323) and initial CIP concentration (30–200 mg/L). The Fe-Cu electrolytic materials were fabricated by the chemical plating method, and Fe-C materials were mechanically mixed from iron powder and graphite. The results show that at a pH value of 3, shaking time 120 min, shaking speed 250 rpm, a mass of Fe-Cu, Fe-C material of 2 g/L and initial CIP concentration of 203.79 mg/L, the CIP removal efficiency of Fe-Cu material reached 90.25% and that of Fe-C material was 85.12%. The removal of CIP on Fe-Cu and Fe-C materials follows pseudo-first-order kinetics. The activation energy of CIP removal of Fe-Cu material is 14.93 KJ/mol and of Fe-C material is 16.87 KJ/mol. The positive ΔH proves that CIP removal is endothermic. A negative entropy of 0.239 kJ/mol and 0.235 kJ/mol (which is near zero and is also relatively positive) indicated the rapid removal of the CIP molecules into the removed products. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr9122110 |