Loading…
Dislocation Analysis of 3C-SiC Nanoindentation with Different Crystal Plane Groups Based on Molecular Dynamics Simulation
To explore the deformation law of nanoindentation dislocations of different crystal plane groups of 3C-SiC by cube indenter. The molecular dynamics simulation method is used to construct the different crystal plane family models of 3C-SiC, select the ensemble, set the potential function, optimize th...
Saved in:
Published in: | Journal of nanomaterials 2021-12, Vol.2021, p.1-11 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c337t-9661c3444ef460d9e23781f3f1bf048041b9590dba1fce5005a4a5cb92c6106f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c337t-9661c3444ef460d9e23781f3f1bf048041b9590dba1fce5005a4a5cb92c6106f3 |
container_end_page | 11 |
container_issue | |
container_start_page | 1 |
container_title | Journal of nanomaterials |
container_volume | 2021 |
creator | Yu, Dongling Zhang, Huiling Yi, Jiaqi Fang, Yongzhen Wu, Nanxing |
description | To explore the deformation law of nanoindentation dislocations of different crystal plane groups of 3C-SiC by cube indenter. The molecular dynamics simulation method is used to construct the different crystal plane family models of 3C-SiC, select the ensemble, set the potential function, optimize the crystal structure, and relax the indentation process. The radial distribution function, shear strain, and dislocation deformation of nanoindentation on (001), (110), and (111) planes were analyzed, respectively. In the radial distribution function, the change in gr in the (110) crystal plane is the most obvious. Shear strain and dislocation occur easily at the boundary of square indentation defects. During the indentation process, the shear strain is enhanced along the atomic bond arrangement structure, (001) crystal plane shear strain is mainly concentrated around and below the indentation defects and produce a large number of cross dislocations, (110) the crystal plane shear strain is mainly concentrated in the shear strain chain extending around and below the indentation defect, which mainly produces horizontal dislocations, and (111) the crystal plane shear strain is mainly concentrated in four weeks extending on the left and right sides in the direction below the indentation defect and produces horizontal and vertical dislocations. The direction of shear stress release is related to the crystal structure. The crystal structure affects the direction of atomic slip, resulting in the results of sliding in different directions. The final dislocation rings are different, resulting in different indentation results. |
doi_str_mv | 10.1155/2021/2183326 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2613959589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2613959589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-9661c3444ef460d9e23781f3f1bf048041b9590dba1fce5005a4a5cb92c6106f3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd3_oCAl1qX7zWXs9MpzA-YXpc0TVhG18ykZfTfmzHx0qtzeHnOC-cB4Bqje4w5nxBE8ITgnFIiTsAIi3yaMUzk6d-O0Tm4iHGDEOOSkxEY5i42XqvO-RbOWtUM0UXoLaRFtnIFfFOtd21t2u6I7F23hnNnrQkpg0UYYqca-NGo1sBF8P0uwgcVTQ0T_Oobo_tGBTgfWrV1OsKV26bgUHUJzqxqorn6nWPw9fT4WTxny_fFSzFbZprSaZdJIbCmjDFjmUC1NIROc2ypxZVFLEcMV5JLVFcKW204QlwxxXUliRYYCUvH4ObYuwv-uzexKze-D-nTWBKBaTrmuUzU3ZHSwccYjC13wW1VGEqMyoPc8iC3_JWb8Nsjvk5y1N79T_8Alcx5Pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2613959589</pqid></control><display><type>article</type><title>Dislocation Analysis of 3C-SiC Nanoindentation with Different Crystal Plane Groups Based on Molecular Dynamics Simulation</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Yu, Dongling ; Zhang, Huiling ; Yi, Jiaqi ; Fang, Yongzhen ; Wu, Nanxing</creator><contributor>Yao, Hui ; Hui Yao</contributor><creatorcontrib>Yu, Dongling ; Zhang, Huiling ; Yi, Jiaqi ; Fang, Yongzhen ; Wu, Nanxing ; Yao, Hui ; Hui Yao</creatorcontrib><description>To explore the deformation law of nanoindentation dislocations of different crystal plane groups of 3C-SiC by cube indenter. The molecular dynamics simulation method is used to construct the different crystal plane family models of 3C-SiC, select the ensemble, set the potential function, optimize the crystal structure, and relax the indentation process. The radial distribution function, shear strain, and dislocation deformation of nanoindentation on (001), (110), and (111) planes were analyzed, respectively. In the radial distribution function, the change in gr in the (110) crystal plane is the most obvious. Shear strain and dislocation occur easily at the boundary of square indentation defects. During the indentation process, the shear strain is enhanced along the atomic bond arrangement structure, (001) crystal plane shear strain is mainly concentrated around and below the indentation defects and produce a large number of cross dislocations, (110) the crystal plane shear strain is mainly concentrated in the shear strain chain extending around and below the indentation defect, which mainly produces horizontal dislocations, and (111) the crystal plane shear strain is mainly concentrated in four weeks extending on the left and right sides in the direction below the indentation defect and produces horizontal and vertical dislocations. The direction of shear stress release is related to the crystal structure. The crystal structure affects the direction of atomic slip, resulting in the results of sliding in different directions. The final dislocation rings are different, resulting in different indentation results.</description><identifier>ISSN: 1687-4110</identifier><identifier>EISSN: 1687-4129</identifier><identifier>DOI: 10.1155/2021/2183326</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Atomic structure ; Chemical bonds ; Crystal defects ; Crystal dislocations ; Crystal structure ; Crystal surfaces ; Deformation ; Distribution functions ; Experiments ; Mechanical properties ; Molecular dynamics ; Nanoindentation ; Nanomaterials ; Radial distribution ; Shear strain ; Shear stress ; Silicon carbide ; Simulation ; Systems stability</subject><ispartof>Journal of nanomaterials, 2021-12, Vol.2021, p.1-11</ispartof><rights>Copyright © 2021 Dongling Yu et al.</rights><rights>Copyright © 2021 Dongling Yu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-9661c3444ef460d9e23781f3f1bf048041b9590dba1fce5005a4a5cb92c6106f3</citedby><cites>FETCH-LOGICAL-c337t-9661c3444ef460d9e23781f3f1bf048041b9590dba1fce5005a4a5cb92c6106f3</cites><orcidid>0000-0003-4530-7121 ; 0000-0003-2906-4561 ; 0000-0002-1858-7255 ; 0000-0001-5016-436X ; 0000-0001-8544-4417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2613959589/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2613959589?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Yao, Hui</contributor><contributor>Hui Yao</contributor><creatorcontrib>Yu, Dongling</creatorcontrib><creatorcontrib>Zhang, Huiling</creatorcontrib><creatorcontrib>Yi, Jiaqi</creatorcontrib><creatorcontrib>Fang, Yongzhen</creatorcontrib><creatorcontrib>Wu, Nanxing</creatorcontrib><title>Dislocation Analysis of 3C-SiC Nanoindentation with Different Crystal Plane Groups Based on Molecular Dynamics Simulation</title><title>Journal of nanomaterials</title><description>To explore the deformation law of nanoindentation dislocations of different crystal plane groups of 3C-SiC by cube indenter. The molecular dynamics simulation method is used to construct the different crystal plane family models of 3C-SiC, select the ensemble, set the potential function, optimize the crystal structure, and relax the indentation process. The radial distribution function, shear strain, and dislocation deformation of nanoindentation on (001), (110), and (111) planes were analyzed, respectively. In the radial distribution function, the change in gr in the (110) crystal plane is the most obvious. Shear strain and dislocation occur easily at the boundary of square indentation defects. During the indentation process, the shear strain is enhanced along the atomic bond arrangement structure, (001) crystal plane shear strain is mainly concentrated around and below the indentation defects and produce a large number of cross dislocations, (110) the crystal plane shear strain is mainly concentrated in the shear strain chain extending around and below the indentation defect, which mainly produces horizontal dislocations, and (111) the crystal plane shear strain is mainly concentrated in four weeks extending on the left and right sides in the direction below the indentation defect and produces horizontal and vertical dislocations. The direction of shear stress release is related to the crystal structure. The crystal structure affects the direction of atomic slip, resulting in the results of sliding in different directions. The final dislocation rings are different, resulting in different indentation results.</description><subject>Atomic structure</subject><subject>Chemical bonds</subject><subject>Crystal defects</subject><subject>Crystal dislocations</subject><subject>Crystal structure</subject><subject>Crystal surfaces</subject><subject>Deformation</subject><subject>Distribution functions</subject><subject>Experiments</subject><subject>Mechanical properties</subject><subject>Molecular dynamics</subject><subject>Nanoindentation</subject><subject>Nanomaterials</subject><subject>Radial distribution</subject><subject>Shear strain</subject><subject>Shear stress</subject><subject>Silicon carbide</subject><subject>Simulation</subject><subject>Systems stability</subject><issn>1687-4110</issn><issn>1687-4129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kF1LwzAUhoMoOKd3_oCAl1qX7zWXs9MpzA-YXpc0TVhG18ykZfTfmzHx0qtzeHnOC-cB4Bqje4w5nxBE8ITgnFIiTsAIi3yaMUzk6d-O0Tm4iHGDEOOSkxEY5i42XqvO-RbOWtUM0UXoLaRFtnIFfFOtd21t2u6I7F23hnNnrQkpg0UYYqca-NGo1sBF8P0uwgcVTQ0T_Oobo_tGBTgfWrV1OsKV26bgUHUJzqxqorn6nWPw9fT4WTxny_fFSzFbZprSaZdJIbCmjDFjmUC1NIROc2ypxZVFLEcMV5JLVFcKW204QlwxxXUliRYYCUvH4ObYuwv-uzexKze-D-nTWBKBaTrmuUzU3ZHSwccYjC13wW1VGEqMyoPc8iC3_JWb8Nsjvk5y1N79T_8Alcx5Pw</recordid><startdate>20211215</startdate><enddate>20211215</enddate><creator>Yu, Dongling</creator><creator>Zhang, Huiling</creator><creator>Yi, Jiaqi</creator><creator>Fang, Yongzhen</creator><creator>Wu, Nanxing</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-4530-7121</orcidid><orcidid>https://orcid.org/0000-0003-2906-4561</orcidid><orcidid>https://orcid.org/0000-0002-1858-7255</orcidid><orcidid>https://orcid.org/0000-0001-5016-436X</orcidid><orcidid>https://orcid.org/0000-0001-8544-4417</orcidid></search><sort><creationdate>20211215</creationdate><title>Dislocation Analysis of 3C-SiC Nanoindentation with Different Crystal Plane Groups Based on Molecular Dynamics Simulation</title><author>Yu, Dongling ; Zhang, Huiling ; Yi, Jiaqi ; Fang, Yongzhen ; Wu, Nanxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-9661c3444ef460d9e23781f3f1bf048041b9590dba1fce5005a4a5cb92c6106f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic structure</topic><topic>Chemical bonds</topic><topic>Crystal defects</topic><topic>Crystal dislocations</topic><topic>Crystal structure</topic><topic>Crystal surfaces</topic><topic>Deformation</topic><topic>Distribution functions</topic><topic>Experiments</topic><topic>Mechanical properties</topic><topic>Molecular dynamics</topic><topic>Nanoindentation</topic><topic>Nanomaterials</topic><topic>Radial distribution</topic><topic>Shear strain</topic><topic>Shear stress</topic><topic>Silicon carbide</topic><topic>Simulation</topic><topic>Systems stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Dongling</creatorcontrib><creatorcontrib>Zhang, Huiling</creatorcontrib><creatorcontrib>Yi, Jiaqi</creatorcontrib><creatorcontrib>Fang, Yongzhen</creatorcontrib><creatorcontrib>Wu, Nanxing</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Materials science collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of nanomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Dongling</au><au>Zhang, Huiling</au><au>Yi, Jiaqi</au><au>Fang, Yongzhen</au><au>Wu, Nanxing</au><au>Yao, Hui</au><au>Hui Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dislocation Analysis of 3C-SiC Nanoindentation with Different Crystal Plane Groups Based on Molecular Dynamics Simulation</atitle><jtitle>Journal of nanomaterials</jtitle><date>2021-12-15</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1687-4110</issn><eissn>1687-4129</eissn><abstract>To explore the deformation law of nanoindentation dislocations of different crystal plane groups of 3C-SiC by cube indenter. The molecular dynamics simulation method is used to construct the different crystal plane family models of 3C-SiC, select the ensemble, set the potential function, optimize the crystal structure, and relax the indentation process. The radial distribution function, shear strain, and dislocation deformation of nanoindentation on (001), (110), and (111) planes were analyzed, respectively. In the radial distribution function, the change in gr in the (110) crystal plane is the most obvious. Shear strain and dislocation occur easily at the boundary of square indentation defects. During the indentation process, the shear strain is enhanced along the atomic bond arrangement structure, (001) crystal plane shear strain is mainly concentrated around and below the indentation defects and produce a large number of cross dislocations, (110) the crystal plane shear strain is mainly concentrated in the shear strain chain extending around and below the indentation defect, which mainly produces horizontal dislocations, and (111) the crystal plane shear strain is mainly concentrated in four weeks extending on the left and right sides in the direction below the indentation defect and produces horizontal and vertical dislocations. The direction of shear stress release is related to the crystal structure. The crystal structure affects the direction of atomic slip, resulting in the results of sliding in different directions. The final dislocation rings are different, resulting in different indentation results.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/2183326</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4530-7121</orcidid><orcidid>https://orcid.org/0000-0003-2906-4561</orcidid><orcidid>https://orcid.org/0000-0002-1858-7255</orcidid><orcidid>https://orcid.org/0000-0001-5016-436X</orcidid><orcidid>https://orcid.org/0000-0001-8544-4417</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-4110 |
ispartof | Journal of nanomaterials, 2021-12, Vol.2021, p.1-11 |
issn | 1687-4110 1687-4129 |
language | eng |
recordid | cdi_proquest_journals_2613959589 |
source | Wiley Online Library Open Access; Publicly Available Content (ProQuest) |
subjects | Atomic structure Chemical bonds Crystal defects Crystal dislocations Crystal structure Crystal surfaces Deformation Distribution functions Experiments Mechanical properties Molecular dynamics Nanoindentation Nanomaterials Radial distribution Shear strain Shear stress Silicon carbide Simulation Systems stability |
title | Dislocation Analysis of 3C-SiC Nanoindentation with Different Crystal Plane Groups Based on Molecular Dynamics Simulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A24%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dislocation%20Analysis%20of%203C-SiC%20Nanoindentation%20with%20Different%20Crystal%20Plane%20Groups%20Based%20on%20Molecular%20Dynamics%20Simulation&rft.jtitle=Journal%20of%20nanomaterials&rft.au=Yu,%20Dongling&rft.date=2021-12-15&rft.volume=2021&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1687-4110&rft.eissn=1687-4129&rft_id=info:doi/10.1155/2021/2183326&rft_dat=%3Cproquest_cross%3E2613959589%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-9661c3444ef460d9e23781f3f1bf048041b9590dba1fce5005a4a5cb92c6106f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2613959589&rft_id=info:pmid/&rfr_iscdi=true |