Loading…

Dislocation Analysis of 3C-SiC Nanoindentation with Different Crystal Plane Groups Based on Molecular Dynamics Simulation

To explore the deformation law of nanoindentation dislocations of different crystal plane groups of 3C-SiC by cube indenter. The molecular dynamics simulation method is used to construct the different crystal plane family models of 3C-SiC, select the ensemble, set the potential function, optimize th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nanomaterials 2021-12, Vol.2021, p.1-11
Main Authors: Yu, Dongling, Zhang, Huiling, Yi, Jiaqi, Fang, Yongzhen, Wu, Nanxing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c337t-9661c3444ef460d9e23781f3f1bf048041b9590dba1fce5005a4a5cb92c6106f3
cites cdi_FETCH-LOGICAL-c337t-9661c3444ef460d9e23781f3f1bf048041b9590dba1fce5005a4a5cb92c6106f3
container_end_page 11
container_issue
container_start_page 1
container_title Journal of nanomaterials
container_volume 2021
creator Yu, Dongling
Zhang, Huiling
Yi, Jiaqi
Fang, Yongzhen
Wu, Nanxing
description To explore the deformation law of nanoindentation dislocations of different crystal plane groups of 3C-SiC by cube indenter. The molecular dynamics simulation method is used to construct the different crystal plane family models of 3C-SiC, select the ensemble, set the potential function, optimize the crystal structure, and relax the indentation process. The radial distribution function, shear strain, and dislocation deformation of nanoindentation on (001), (110), and (111) planes were analyzed, respectively. In the radial distribution function, the change in gr in the (110) crystal plane is the most obvious. Shear strain and dislocation occur easily at the boundary of square indentation defects. During the indentation process, the shear strain is enhanced along the atomic bond arrangement structure, (001) crystal plane shear strain is mainly concentrated around and below the indentation defects and produce a large number of cross dislocations, (110) the crystal plane shear strain is mainly concentrated in the shear strain chain extending around and below the indentation defect, which mainly produces horizontal dislocations, and (111) the crystal plane shear strain is mainly concentrated in four weeks extending on the left and right sides in the direction below the indentation defect and produces horizontal and vertical dislocations. The direction of shear stress release is related to the crystal structure. The crystal structure affects the direction of atomic slip, resulting in the results of sliding in different directions. The final dislocation rings are different, resulting in different indentation results.
doi_str_mv 10.1155/2021/2183326
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2613959589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2613959589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-9661c3444ef460d9e23781f3f1bf048041b9590dba1fce5005a4a5cb92c6106f3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd3_oCAl1qX7zWXs9MpzA-YXpc0TVhG18ykZfTfmzHx0qtzeHnOC-cB4Bqje4w5nxBE8ITgnFIiTsAIi3yaMUzk6d-O0Tm4iHGDEOOSkxEY5i42XqvO-RbOWtUM0UXoLaRFtnIFfFOtd21t2u6I7F23hnNnrQkpg0UYYqca-NGo1sBF8P0uwgcVTQ0T_Oobo_tGBTgfWrV1OsKV26bgUHUJzqxqorn6nWPw9fT4WTxny_fFSzFbZprSaZdJIbCmjDFjmUC1NIROc2ypxZVFLEcMV5JLVFcKW204QlwxxXUliRYYCUvH4ObYuwv-uzexKze-D-nTWBKBaTrmuUzU3ZHSwccYjC13wW1VGEqMyoPc8iC3_JWb8Nsjvk5y1N79T_8Alcx5Pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2613959589</pqid></control><display><type>article</type><title>Dislocation Analysis of 3C-SiC Nanoindentation with Different Crystal Plane Groups Based on Molecular Dynamics Simulation</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content (ProQuest)</source><creator>Yu, Dongling ; Zhang, Huiling ; Yi, Jiaqi ; Fang, Yongzhen ; Wu, Nanxing</creator><contributor>Yao, Hui ; Hui Yao</contributor><creatorcontrib>Yu, Dongling ; Zhang, Huiling ; Yi, Jiaqi ; Fang, Yongzhen ; Wu, Nanxing ; Yao, Hui ; Hui Yao</creatorcontrib><description>To explore the deformation law of nanoindentation dislocations of different crystal plane groups of 3C-SiC by cube indenter. The molecular dynamics simulation method is used to construct the different crystal plane family models of 3C-SiC, select the ensemble, set the potential function, optimize the crystal structure, and relax the indentation process. The radial distribution function, shear strain, and dislocation deformation of nanoindentation on (001), (110), and (111) planes were analyzed, respectively. In the radial distribution function, the change in gr in the (110) crystal plane is the most obvious. Shear strain and dislocation occur easily at the boundary of square indentation defects. During the indentation process, the shear strain is enhanced along the atomic bond arrangement structure, (001) crystal plane shear strain is mainly concentrated around and below the indentation defects and produce a large number of cross dislocations, (110) the crystal plane shear strain is mainly concentrated in the shear strain chain extending around and below the indentation defect, which mainly produces horizontal dislocations, and (111) the crystal plane shear strain is mainly concentrated in four weeks extending on the left and right sides in the direction below the indentation defect and produces horizontal and vertical dislocations. The direction of shear stress release is related to the crystal structure. The crystal structure affects the direction of atomic slip, resulting in the results of sliding in different directions. The final dislocation rings are different, resulting in different indentation results.</description><identifier>ISSN: 1687-4110</identifier><identifier>EISSN: 1687-4129</identifier><identifier>DOI: 10.1155/2021/2183326</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Atomic structure ; Chemical bonds ; Crystal defects ; Crystal dislocations ; Crystal structure ; Crystal surfaces ; Deformation ; Distribution functions ; Experiments ; Mechanical properties ; Molecular dynamics ; Nanoindentation ; Nanomaterials ; Radial distribution ; Shear strain ; Shear stress ; Silicon carbide ; Simulation ; Systems stability</subject><ispartof>Journal of nanomaterials, 2021-12, Vol.2021, p.1-11</ispartof><rights>Copyright © 2021 Dongling Yu et al.</rights><rights>Copyright © 2021 Dongling Yu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-9661c3444ef460d9e23781f3f1bf048041b9590dba1fce5005a4a5cb92c6106f3</citedby><cites>FETCH-LOGICAL-c337t-9661c3444ef460d9e23781f3f1bf048041b9590dba1fce5005a4a5cb92c6106f3</cites><orcidid>0000-0003-4530-7121 ; 0000-0003-2906-4561 ; 0000-0002-1858-7255 ; 0000-0001-5016-436X ; 0000-0001-8544-4417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2613959589/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2613959589?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Yao, Hui</contributor><contributor>Hui Yao</contributor><creatorcontrib>Yu, Dongling</creatorcontrib><creatorcontrib>Zhang, Huiling</creatorcontrib><creatorcontrib>Yi, Jiaqi</creatorcontrib><creatorcontrib>Fang, Yongzhen</creatorcontrib><creatorcontrib>Wu, Nanxing</creatorcontrib><title>Dislocation Analysis of 3C-SiC Nanoindentation with Different Crystal Plane Groups Based on Molecular Dynamics Simulation</title><title>Journal of nanomaterials</title><description>To explore the deformation law of nanoindentation dislocations of different crystal plane groups of 3C-SiC by cube indenter. The molecular dynamics simulation method is used to construct the different crystal plane family models of 3C-SiC, select the ensemble, set the potential function, optimize the crystal structure, and relax the indentation process. The radial distribution function, shear strain, and dislocation deformation of nanoindentation on (001), (110), and (111) planes were analyzed, respectively. In the radial distribution function, the change in gr in the (110) crystal plane is the most obvious. Shear strain and dislocation occur easily at the boundary of square indentation defects. During the indentation process, the shear strain is enhanced along the atomic bond arrangement structure, (001) crystal plane shear strain is mainly concentrated around and below the indentation defects and produce a large number of cross dislocations, (110) the crystal plane shear strain is mainly concentrated in the shear strain chain extending around and below the indentation defect, which mainly produces horizontal dislocations, and (111) the crystal plane shear strain is mainly concentrated in four weeks extending on the left and right sides in the direction below the indentation defect and produces horizontal and vertical dislocations. The direction of shear stress release is related to the crystal structure. The crystal structure affects the direction of atomic slip, resulting in the results of sliding in different directions. The final dislocation rings are different, resulting in different indentation results.</description><subject>Atomic structure</subject><subject>Chemical bonds</subject><subject>Crystal defects</subject><subject>Crystal dislocations</subject><subject>Crystal structure</subject><subject>Crystal surfaces</subject><subject>Deformation</subject><subject>Distribution functions</subject><subject>Experiments</subject><subject>Mechanical properties</subject><subject>Molecular dynamics</subject><subject>Nanoindentation</subject><subject>Nanomaterials</subject><subject>Radial distribution</subject><subject>Shear strain</subject><subject>Shear stress</subject><subject>Silicon carbide</subject><subject>Simulation</subject><subject>Systems stability</subject><issn>1687-4110</issn><issn>1687-4129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kF1LwzAUhoMoOKd3_oCAl1qX7zWXs9MpzA-YXpc0TVhG18ykZfTfmzHx0qtzeHnOC-cB4Bqje4w5nxBE8ITgnFIiTsAIi3yaMUzk6d-O0Tm4iHGDEOOSkxEY5i42XqvO-RbOWtUM0UXoLaRFtnIFfFOtd21t2u6I7F23hnNnrQkpg0UYYqca-NGo1sBF8P0uwgcVTQ0T_Oobo_tGBTgfWrV1OsKV26bgUHUJzqxqorn6nWPw9fT4WTxny_fFSzFbZprSaZdJIbCmjDFjmUC1NIROc2ypxZVFLEcMV5JLVFcKW204QlwxxXUliRYYCUvH4ObYuwv-uzexKze-D-nTWBKBaTrmuUzU3ZHSwccYjC13wW1VGEqMyoPc8iC3_JWb8Nsjvk5y1N79T_8Alcx5Pw</recordid><startdate>20211215</startdate><enddate>20211215</enddate><creator>Yu, Dongling</creator><creator>Zhang, Huiling</creator><creator>Yi, Jiaqi</creator><creator>Fang, Yongzhen</creator><creator>Wu, Nanxing</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-4530-7121</orcidid><orcidid>https://orcid.org/0000-0003-2906-4561</orcidid><orcidid>https://orcid.org/0000-0002-1858-7255</orcidid><orcidid>https://orcid.org/0000-0001-5016-436X</orcidid><orcidid>https://orcid.org/0000-0001-8544-4417</orcidid></search><sort><creationdate>20211215</creationdate><title>Dislocation Analysis of 3C-SiC Nanoindentation with Different Crystal Plane Groups Based on Molecular Dynamics Simulation</title><author>Yu, Dongling ; Zhang, Huiling ; Yi, Jiaqi ; Fang, Yongzhen ; Wu, Nanxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-9661c3444ef460d9e23781f3f1bf048041b9590dba1fce5005a4a5cb92c6106f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic structure</topic><topic>Chemical bonds</topic><topic>Crystal defects</topic><topic>Crystal dislocations</topic><topic>Crystal structure</topic><topic>Crystal surfaces</topic><topic>Deformation</topic><topic>Distribution functions</topic><topic>Experiments</topic><topic>Mechanical properties</topic><topic>Molecular dynamics</topic><topic>Nanoindentation</topic><topic>Nanomaterials</topic><topic>Radial distribution</topic><topic>Shear strain</topic><topic>Shear stress</topic><topic>Silicon carbide</topic><topic>Simulation</topic><topic>Systems stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Dongling</creatorcontrib><creatorcontrib>Zhang, Huiling</creatorcontrib><creatorcontrib>Yi, Jiaqi</creatorcontrib><creatorcontrib>Fang, Yongzhen</creatorcontrib><creatorcontrib>Wu, Nanxing</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Materials science collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of nanomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Dongling</au><au>Zhang, Huiling</au><au>Yi, Jiaqi</au><au>Fang, Yongzhen</au><au>Wu, Nanxing</au><au>Yao, Hui</au><au>Hui Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dislocation Analysis of 3C-SiC Nanoindentation with Different Crystal Plane Groups Based on Molecular Dynamics Simulation</atitle><jtitle>Journal of nanomaterials</jtitle><date>2021-12-15</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1687-4110</issn><eissn>1687-4129</eissn><abstract>To explore the deformation law of nanoindentation dislocations of different crystal plane groups of 3C-SiC by cube indenter. The molecular dynamics simulation method is used to construct the different crystal plane family models of 3C-SiC, select the ensemble, set the potential function, optimize the crystal structure, and relax the indentation process. The radial distribution function, shear strain, and dislocation deformation of nanoindentation on (001), (110), and (111) planes were analyzed, respectively. In the radial distribution function, the change in gr in the (110) crystal plane is the most obvious. Shear strain and dislocation occur easily at the boundary of square indentation defects. During the indentation process, the shear strain is enhanced along the atomic bond arrangement structure, (001) crystal plane shear strain is mainly concentrated around and below the indentation defects and produce a large number of cross dislocations, (110) the crystal plane shear strain is mainly concentrated in the shear strain chain extending around and below the indentation defect, which mainly produces horizontal dislocations, and (111) the crystal plane shear strain is mainly concentrated in four weeks extending on the left and right sides in the direction below the indentation defect and produces horizontal and vertical dislocations. The direction of shear stress release is related to the crystal structure. The crystal structure affects the direction of atomic slip, resulting in the results of sliding in different directions. The final dislocation rings are different, resulting in different indentation results.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2021/2183326</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4530-7121</orcidid><orcidid>https://orcid.org/0000-0003-2906-4561</orcidid><orcidid>https://orcid.org/0000-0002-1858-7255</orcidid><orcidid>https://orcid.org/0000-0001-5016-436X</orcidid><orcidid>https://orcid.org/0000-0001-8544-4417</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-4110
ispartof Journal of nanomaterials, 2021-12, Vol.2021, p.1-11
issn 1687-4110
1687-4129
language eng
recordid cdi_proquest_journals_2613959589
source Wiley Online Library Open Access; Publicly Available Content (ProQuest)
subjects Atomic structure
Chemical bonds
Crystal defects
Crystal dislocations
Crystal structure
Crystal surfaces
Deformation
Distribution functions
Experiments
Mechanical properties
Molecular dynamics
Nanoindentation
Nanomaterials
Radial distribution
Shear strain
Shear stress
Silicon carbide
Simulation
Systems stability
title Dislocation Analysis of 3C-SiC Nanoindentation with Different Crystal Plane Groups Based on Molecular Dynamics Simulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A24%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dislocation%20Analysis%20of%203C-SiC%20Nanoindentation%20with%20Different%20Crystal%20Plane%20Groups%20Based%20on%20Molecular%20Dynamics%20Simulation&rft.jtitle=Journal%20of%20nanomaterials&rft.au=Yu,%20Dongling&rft.date=2021-12-15&rft.volume=2021&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1687-4110&rft.eissn=1687-4129&rft_id=info:doi/10.1155/2021/2183326&rft_dat=%3Cproquest_cross%3E2613959589%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c337t-9661c3444ef460d9e23781f3f1bf048041b9590dba1fce5005a4a5cb92c6106f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2613959589&rft_id=info:pmid/&rfr_iscdi=true