Loading…
Existence, Comparison, and Convergence Results for a Class of Elliptic Hemivariational Inequalities
In this paper we study a class of elliptic boundary hemivariational inequalities which originates in the steady-state heat conduction problem with nonmonotone multivalued subdifferential boundary condition on a portion of the boundary described by the Clarke generalized gradient of a locally Lipschi...
Saved in:
Published in: | Applied mathematics & optimization 2021-12, Vol.84 (Suppl 2), p.1453-1475 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-f5d087e96c49ecc318fe4f67184dcd9aef710c5dfea6f83c510b1c0b6872ff813 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-f5d087e96c49ecc318fe4f67184dcd9aef710c5dfea6f83c510b1c0b6872ff813 |
container_end_page | 1475 |
container_issue | Suppl 2 |
container_start_page | 1453 |
container_title | Applied mathematics & optimization |
container_volume | 84 |
creator | Gariboldi, Claudia M. Migórski, Stanisław Ochal, Anna Tarzia, Domingo A. |
description | In this paper we study a class of elliptic boundary hemivariational inequalities which originates in the steady-state heat conduction problem with nonmonotone multivalued subdifferential boundary condition on a portion of the boundary described by the Clarke generalized gradient of a locally Lipschitz function. First, we prove a new existence result for the inequality employing the theory of pseudomonotone operators. Next, we give a result on comparison of solutions, and provide sufficient conditions that guarantee the asymptotic behavior of solution, when the heat transfer coefficient tends to infinity. Further, we show a result on the continuous dependence of solution on the internal energy and heat flux. Finally, some examples of convex and nonconvex potentials illustrate our hypotheses. |
doi_str_mv | 10.1007/s00245-021-09800-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2614938152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2614938152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-f5d087e96c49ecc318fe4f67184dcd9aef710c5dfea6f83c510b1c0b6872ff813</originalsourceid><addsrcrecordid>eNp9kNFKwzAUhoMoOKcv4FXA20VPmjZtLqVMJwwE0euQpcnI6JouaYe-vZkVvPPqcDjf_3P4ELqlcE8ByocIkOUFgYwSEBUAEWdoRnOWEeDAz9EMQBQk55RfoqsYd5B4xtkM6eWni4PptFng2u97FVz03QKrrkl7dzRhezriNxPHdojY-oAVrlsVI_YWL9vW9YPTeGX27pjCanC-Uy1-6cxhVK0bnInX6MKqNpqb3zlHH0_L93pF1q_PL_Xjmuj0ykBs0UBVGsF1LozWjFbW5JaXtMob3QhlbElBF401ituK6YLChmrY8KrMrK0om6O7qbcP_jCaOMidH0P6JsqM01ywihZZorKJ0sHHGIyVfXB7Fb4kBXmSKSeZMsmUPzKlSCE2hWKCu60Jf9X_pL4BeSt4ew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614938152</pqid></control><display><type>article</type><title>Existence, Comparison, and Convergence Results for a Class of Elliptic Hemivariational Inequalities</title><source>Business Source Ultimate</source><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Gariboldi, Claudia M. ; Migórski, Stanisław ; Ochal, Anna ; Tarzia, Domingo A.</creator><creatorcontrib>Gariboldi, Claudia M. ; Migórski, Stanisław ; Ochal, Anna ; Tarzia, Domingo A.</creatorcontrib><description>In this paper we study a class of elliptic boundary hemivariational inequalities which originates in the steady-state heat conduction problem with nonmonotone multivalued subdifferential boundary condition on a portion of the boundary described by the Clarke generalized gradient of a locally Lipschitz function. First, we prove a new existence result for the inequality employing the theory of pseudomonotone operators. Next, we give a result on comparison of solutions, and provide sufficient conditions that guarantee the asymptotic behavior of solution, when the heat transfer coefficient tends to infinity. Further, we show a result on the continuous dependence of solution on the internal energy and heat flux. Finally, some examples of convex and nonconvex potentials illustrate our hypotheses.</description><identifier>ISSN: 0095-4616</identifier><identifier>EISSN: 1432-0606</identifier><identifier>DOI: 10.1007/s00245-021-09800-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applied mathematics ; Asymptotic properties ; Boundary conditions ; Calculus of Variations and Optimal Control; Optimization ; Conduction heating ; Conductive heat transfer ; Control ; Heat ; Heat flux ; Heat transfer coefficients ; Hypotheses ; Inequalities ; Internal energy ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical and Computational Physics ; Operators (mathematics) ; Optimization ; Original Paper ; Simulation ; Systems Theory ; Theoretical</subject><ispartof>Applied mathematics & optimization, 2021-12, Vol.84 (Suppl 2), p.1453-1475</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-f5d087e96c49ecc318fe4f67184dcd9aef710c5dfea6f83c510b1c0b6872ff813</citedby><cites>FETCH-LOGICAL-c363t-f5d087e96c49ecc318fe4f67184dcd9aef710c5dfea6f83c510b1c0b6872ff813</cites><orcidid>0000-0003-4385-2302</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2614938152/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2614938152?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Gariboldi, Claudia M.</creatorcontrib><creatorcontrib>Migórski, Stanisław</creatorcontrib><creatorcontrib>Ochal, Anna</creatorcontrib><creatorcontrib>Tarzia, Domingo A.</creatorcontrib><title>Existence, Comparison, and Convergence Results for a Class of Elliptic Hemivariational Inequalities</title><title>Applied mathematics & optimization</title><addtitle>Appl Math Optim</addtitle><description>In this paper we study a class of elliptic boundary hemivariational inequalities which originates in the steady-state heat conduction problem with nonmonotone multivalued subdifferential boundary condition on a portion of the boundary described by the Clarke generalized gradient of a locally Lipschitz function. First, we prove a new existence result for the inequality employing the theory of pseudomonotone operators. Next, we give a result on comparison of solutions, and provide sufficient conditions that guarantee the asymptotic behavior of solution, when the heat transfer coefficient tends to infinity. Further, we show a result on the continuous dependence of solution on the internal energy and heat flux. Finally, some examples of convex and nonconvex potentials illustrate our hypotheses.</description><subject>Applied mathematics</subject><subject>Asymptotic properties</subject><subject>Boundary conditions</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Control</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Heat transfer coefficients</subject><subject>Hypotheses</subject><subject>Inequalities</subject><subject>Internal energy</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical and Computational Physics</subject><subject>Operators (mathematics)</subject><subject>Optimization</subject><subject>Original Paper</subject><subject>Simulation</subject><subject>Systems Theory</subject><subject>Theoretical</subject><issn>0095-4616</issn><issn>1432-0606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp9kNFKwzAUhoMoOKcv4FXA20VPmjZtLqVMJwwE0euQpcnI6JouaYe-vZkVvPPqcDjf_3P4ELqlcE8ByocIkOUFgYwSEBUAEWdoRnOWEeDAz9EMQBQk55RfoqsYd5B4xtkM6eWni4PptFng2u97FVz03QKrrkl7dzRhezriNxPHdojY-oAVrlsVI_YWL9vW9YPTeGX27pjCanC-Uy1-6cxhVK0bnInX6MKqNpqb3zlHH0_L93pF1q_PL_Xjmuj0ykBs0UBVGsF1LozWjFbW5JaXtMob3QhlbElBF401ituK6YLChmrY8KrMrK0om6O7qbcP_jCaOMidH0P6JsqM01ywihZZorKJ0sHHGIyVfXB7Fb4kBXmSKSeZMsmUPzKlSCE2hWKCu60Jf9X_pL4BeSt4ew</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Gariboldi, Claudia M.</creator><creator>Migórski, Stanisław</creator><creator>Ochal, Anna</creator><creator>Tarzia, Domingo A.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4385-2302</orcidid></search><sort><creationdate>20211201</creationdate><title>Existence, Comparison, and Convergence Results for a Class of Elliptic Hemivariational Inequalities</title><author>Gariboldi, Claudia M. ; Migórski, Stanisław ; Ochal, Anna ; Tarzia, Domingo A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-f5d087e96c49ecc318fe4f67184dcd9aef710c5dfea6f83c510b1c0b6872ff813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied mathematics</topic><topic>Asymptotic properties</topic><topic>Boundary conditions</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Control</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Heat transfer coefficients</topic><topic>Hypotheses</topic><topic>Inequalities</topic><topic>Internal energy</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical and Computational Physics</topic><topic>Operators (mathematics)</topic><topic>Optimization</topic><topic>Original Paper</topic><topic>Simulation</topic><topic>Systems Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gariboldi, Claudia M.</creatorcontrib><creatorcontrib>Migórski, Stanisław</creatorcontrib><creatorcontrib>Ochal, Anna</creatorcontrib><creatorcontrib>Tarzia, Domingo A.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied mathematics & optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gariboldi, Claudia M.</au><au>Migórski, Stanisław</au><au>Ochal, Anna</au><au>Tarzia, Domingo A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Existence, Comparison, and Convergence Results for a Class of Elliptic Hemivariational Inequalities</atitle><jtitle>Applied mathematics & optimization</jtitle><stitle>Appl Math Optim</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>84</volume><issue>Suppl 2</issue><spage>1453</spage><epage>1475</epage><pages>1453-1475</pages><issn>0095-4616</issn><eissn>1432-0606</eissn><abstract>In this paper we study a class of elliptic boundary hemivariational inequalities which originates in the steady-state heat conduction problem with nonmonotone multivalued subdifferential boundary condition on a portion of the boundary described by the Clarke generalized gradient of a locally Lipschitz function. First, we prove a new existence result for the inequality employing the theory of pseudomonotone operators. Next, we give a result on comparison of solutions, and provide sufficient conditions that guarantee the asymptotic behavior of solution, when the heat transfer coefficient tends to infinity. Further, we show a result on the continuous dependence of solution on the internal energy and heat flux. Finally, some examples of convex and nonconvex potentials illustrate our hypotheses.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00245-021-09800-9</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-4385-2302</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0095-4616 |
ispartof | Applied mathematics & optimization, 2021-12, Vol.84 (Suppl 2), p.1453-1475 |
issn | 0095-4616 1432-0606 |
language | eng |
recordid | cdi_proquest_journals_2614938152 |
source | Business Source Ultimate; ABI/INFORM Global; Springer Link |
subjects | Applied mathematics Asymptotic properties Boundary conditions Calculus of Variations and Optimal Control Optimization Conduction heating Conductive heat transfer Control Heat Heat flux Heat transfer coefficients Hypotheses Inequalities Internal energy Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Numerical and Computational Physics Operators (mathematics) Optimization Original Paper Simulation Systems Theory Theoretical |
title | Existence, Comparison, and Convergence Results for a Class of Elliptic Hemivariational Inequalities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A13%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Existence,%20Comparison,%20and%20Convergence%20Results%20for%20a%20Class%20of%20Elliptic%20Hemivariational%20Inequalities&rft.jtitle=Applied%20mathematics%20&%20optimization&rft.au=Gariboldi,%20Claudia%20M.&rft.date=2021-12-01&rft.volume=84&rft.issue=Suppl%202&rft.spage=1453&rft.epage=1475&rft.pages=1453-1475&rft.issn=0095-4616&rft.eissn=1432-0606&rft_id=info:doi/10.1007/s00245-021-09800-9&rft_dat=%3Cproquest_cross%3E2614938152%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-f5d087e96c49ecc318fe4f67184dcd9aef710c5dfea6f83c510b1c0b6872ff813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2614938152&rft_id=info:pmid/&rfr_iscdi=true |