Loading…

Multi-Vehicle Collaborative Learning for Trajectory Prediction With Spatio-Temporal Tensor Fusion

Accurate behavior prediction of other vehicles in the surroundings is critical for intelligent transportation systems. Common practices to reason about the future trajectory are through their historical paths. However, the impact of traffic context is ignored, which means the beneficial environment...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems 2022-01, Vol.23 (1), p.236-248
Main Authors: Wang, Yu, Zhao, Shengjie, Zhang, Rongqing, Cheng, Xiang, Yang, Liuqing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-1d6c8d79f9b9da71e6af0fa2b1f55130bf4e61dd4aa2dafededecb686f0b14af3
cites cdi_FETCH-LOGICAL-c293t-1d6c8d79f9b9da71e6af0fa2b1f55130bf4e61dd4aa2dafededecb686f0b14af3
container_end_page 248
container_issue 1
container_start_page 236
container_title IEEE transactions on intelligent transportation systems
container_volume 23
creator Wang, Yu
Zhao, Shengjie
Zhang, Rongqing
Cheng, Xiang
Yang, Liuqing
description Accurate behavior prediction of other vehicles in the surroundings is critical for intelligent transportation systems. Common practices to reason about the future trajectory are through their historical paths. However, the impact of traffic context is ignored, which means the beneficial environment information is deserted. Although a few methods are proposed to exploit the surrounding vehicle information, they simply model the influence according to spatial relations without considering the temporal information among them. In this paper, a novel multi-vehicle collaborative learning with spatio-temporal tensor fusion model for vehicle trajectory prediction is proposed, which introduces a novel auto-encoder social convolution mechanism and a fancy recurrent social mechanism to model spatial and temporal information among multiple vehicles, respectively. Furthermore, the generative adversarial network is incorporated into our framework to handle the inherent multi-modal characteristics of the agent motion behavior. Finally, we evaluate the proposed multi-vehicle collaborative learning model on NGSIM US-101 and I-80 benchmark datasets. Experimental results demonstrate that the proposed approach outperforms the state-of-the-art for vehicle trajectory prediction. Additionally, we also present qualitative analyses of the multi-modal vehicle trajectory generation and the impacts of surrounding vehicles on trajectory prediction under various circumstances.
doi_str_mv 10.1109/TITS.2020.3009762
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2615164297</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9151374</ieee_id><sourcerecordid>2615164297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-1d6c8d79f9b9da71e6af0fa2b1f55130bf4e61dd4aa2dafededecb686f0b14af3</originalsourceid><addsrcrecordid>eNo9kFFLwzAQx4soOKcfQHwp-NyZS9t0eZThdDBRWNXHkDYXl9E1NWmFfXtTNuQe7jh-vzv4R9EtkBkA4Q_lqtzMKKFklhLCC0bPognk-TwhBNj5ONMs4SQnl9GV97uwzXKASSRfh6Y3ySduTd1gvLBNIyvrZG9-MV6jdK1pv2NtXVw6ucO6t-4QvztUpu6NbeMv02_jTRd4m5S474LaxCW2PhjLwQfkOrrQsvF4c-rT6GP5VC5ekvXb82rxuE5qytM-AcXquSq45hVXsgBkUhMtaQU6zyEllc6QgVKZlFRJjSpUXbE506SCTOp0Gt0f73bO_gzoe7Gzg2vDS0EZ5MAyyotAwZGqnfXeoRadM3vpDgKIGJMUY5JiTFKckgzO3dExiPjP83AzLbL0DzZ2ciU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615164297</pqid></control><display><type>article</type><title>Multi-Vehicle Collaborative Learning for Trajectory Prediction With Spatio-Temporal Tensor Fusion</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wang, Yu ; Zhao, Shengjie ; Zhang, Rongqing ; Cheng, Xiang ; Yang, Liuqing</creator><creatorcontrib>Wang, Yu ; Zhao, Shengjie ; Zhang, Rongqing ; Cheng, Xiang ; Yang, Liuqing</creatorcontrib><description>Accurate behavior prediction of other vehicles in the surroundings is critical for intelligent transportation systems. Common practices to reason about the future trajectory are through their historical paths. However, the impact of traffic context is ignored, which means the beneficial environment information is deserted. Although a few methods are proposed to exploit the surrounding vehicle information, they simply model the influence according to spatial relations without considering the temporal information among them. In this paper, a novel multi-vehicle collaborative learning with spatio-temporal tensor fusion model for vehicle trajectory prediction is proposed, which introduces a novel auto-encoder social convolution mechanism and a fancy recurrent social mechanism to model spatial and temporal information among multiple vehicles, respectively. Furthermore, the generative adversarial network is incorporated into our framework to handle the inherent multi-modal characteristics of the agent motion behavior. Finally, we evaluate the proposed multi-vehicle collaborative learning model on NGSIM US-101 and I-80 benchmark datasets. Experimental results demonstrate that the proposed approach outperforms the state-of-the-art for vehicle trajectory prediction. Additionally, we also present qualitative analyses of the multi-modal vehicle trajectory generation and the impacts of surrounding vehicles on trajectory prediction under various circumstances.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2020.3009762</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coders ; Collaborative learning ; Collaborative work ; Gallium nitride ; Generative adversarial networks ; Intelligent transportation systems ; Intelligent vehicles ; Learning ; Mathematical analysis ; Predictive models ; Qualitative analysis ; spatio-temporal tensor fusion ; Tensile stress ; Tensors ; Trajectories ; Trajectory ; vehicle trajectory prediction ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-01, Vol.23 (1), p.236-248</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-1d6c8d79f9b9da71e6af0fa2b1f55130bf4e61dd4aa2dafededecb686f0b14af3</citedby><cites>FETCH-LOGICAL-c293t-1d6c8d79f9b9da71e6af0fa2b1f55130bf4e61dd4aa2dafededecb686f0b14af3</cites><orcidid>0000-0001-7099-4424 ; 0000-0002-5943-0326 ; 0000-0002-6109-2522 ; 0000-0003-3774-6247 ; 0000-0003-0231-6837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9151374$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Zhao, Shengjie</creatorcontrib><creatorcontrib>Zhang, Rongqing</creatorcontrib><creatorcontrib>Cheng, Xiang</creatorcontrib><creatorcontrib>Yang, Liuqing</creatorcontrib><title>Multi-Vehicle Collaborative Learning for Trajectory Prediction With Spatio-Temporal Tensor Fusion</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Accurate behavior prediction of other vehicles in the surroundings is critical for intelligent transportation systems. Common practices to reason about the future trajectory are through their historical paths. However, the impact of traffic context is ignored, which means the beneficial environment information is deserted. Although a few methods are proposed to exploit the surrounding vehicle information, they simply model the influence according to spatial relations without considering the temporal information among them. In this paper, a novel multi-vehicle collaborative learning with spatio-temporal tensor fusion model for vehicle trajectory prediction is proposed, which introduces a novel auto-encoder social convolution mechanism and a fancy recurrent social mechanism to model spatial and temporal information among multiple vehicles, respectively. Furthermore, the generative adversarial network is incorporated into our framework to handle the inherent multi-modal characteristics of the agent motion behavior. Finally, we evaluate the proposed multi-vehicle collaborative learning model on NGSIM US-101 and I-80 benchmark datasets. Experimental results demonstrate that the proposed approach outperforms the state-of-the-art for vehicle trajectory prediction. Additionally, we also present qualitative analyses of the multi-modal vehicle trajectory generation and the impacts of surrounding vehicles on trajectory prediction under various circumstances.</description><subject>Coders</subject><subject>Collaborative learning</subject><subject>Collaborative work</subject><subject>Gallium nitride</subject><subject>Generative adversarial networks</subject><subject>Intelligent transportation systems</subject><subject>Intelligent vehicles</subject><subject>Learning</subject><subject>Mathematical analysis</subject><subject>Predictive models</subject><subject>Qualitative analysis</subject><subject>spatio-temporal tensor fusion</subject><subject>Tensile stress</subject><subject>Tensors</subject><subject>Trajectories</subject><subject>Trajectory</subject><subject>vehicle trajectory prediction</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAQx4soOKcfQHwp-NyZS9t0eZThdDBRWNXHkDYXl9E1NWmFfXtTNuQe7jh-vzv4R9EtkBkA4Q_lqtzMKKFklhLCC0bPognk-TwhBNj5ONMs4SQnl9GV97uwzXKASSRfh6Y3ySduTd1gvLBNIyvrZG9-MV6jdK1pv2NtXVw6ucO6t-4QvztUpu6NbeMv02_jTRd4m5S474LaxCW2PhjLwQfkOrrQsvF4c-rT6GP5VC5ekvXb82rxuE5qytM-AcXquSq45hVXsgBkUhMtaQU6zyEllc6QgVKZlFRJjSpUXbE506SCTOp0Gt0f73bO_gzoe7Gzg2vDS0EZ5MAyyotAwZGqnfXeoRadM3vpDgKIGJMUY5JiTFKckgzO3dExiPjP83AzLbL0DzZ2ciU</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Wang, Yu</creator><creator>Zhao, Shengjie</creator><creator>Zhang, Rongqing</creator><creator>Cheng, Xiang</creator><creator>Yang, Liuqing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7099-4424</orcidid><orcidid>https://orcid.org/0000-0002-5943-0326</orcidid><orcidid>https://orcid.org/0000-0002-6109-2522</orcidid><orcidid>https://orcid.org/0000-0003-3774-6247</orcidid><orcidid>https://orcid.org/0000-0003-0231-6837</orcidid></search><sort><creationdate>202201</creationdate><title>Multi-Vehicle Collaborative Learning for Trajectory Prediction With Spatio-Temporal Tensor Fusion</title><author>Wang, Yu ; Zhao, Shengjie ; Zhang, Rongqing ; Cheng, Xiang ; Yang, Liuqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-1d6c8d79f9b9da71e6af0fa2b1f55130bf4e61dd4aa2dafededecb686f0b14af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coders</topic><topic>Collaborative learning</topic><topic>Collaborative work</topic><topic>Gallium nitride</topic><topic>Generative adversarial networks</topic><topic>Intelligent transportation systems</topic><topic>Intelligent vehicles</topic><topic>Learning</topic><topic>Mathematical analysis</topic><topic>Predictive models</topic><topic>Qualitative analysis</topic><topic>spatio-temporal tensor fusion</topic><topic>Tensile stress</topic><topic>Tensors</topic><topic>Trajectories</topic><topic>Trajectory</topic><topic>vehicle trajectory prediction</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Zhao, Shengjie</creatorcontrib><creatorcontrib>Zhang, Rongqing</creatorcontrib><creatorcontrib>Cheng, Xiang</creatorcontrib><creatorcontrib>Yang, Liuqing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yu</au><au>Zhao, Shengjie</au><au>Zhang, Rongqing</au><au>Cheng, Xiang</au><au>Yang, Liuqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Vehicle Collaborative Learning for Trajectory Prediction With Spatio-Temporal Tensor Fusion</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-01</date><risdate>2022</risdate><volume>23</volume><issue>1</issue><spage>236</spage><epage>248</epage><pages>236-248</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Accurate behavior prediction of other vehicles in the surroundings is critical for intelligent transportation systems. Common practices to reason about the future trajectory are through their historical paths. However, the impact of traffic context is ignored, which means the beneficial environment information is deserted. Although a few methods are proposed to exploit the surrounding vehicle information, they simply model the influence according to spatial relations without considering the temporal information among them. In this paper, a novel multi-vehicle collaborative learning with spatio-temporal tensor fusion model for vehicle trajectory prediction is proposed, which introduces a novel auto-encoder social convolution mechanism and a fancy recurrent social mechanism to model spatial and temporal information among multiple vehicles, respectively. Furthermore, the generative adversarial network is incorporated into our framework to handle the inherent multi-modal characteristics of the agent motion behavior. Finally, we evaluate the proposed multi-vehicle collaborative learning model on NGSIM US-101 and I-80 benchmark datasets. Experimental results demonstrate that the proposed approach outperforms the state-of-the-art for vehicle trajectory prediction. Additionally, we also present qualitative analyses of the multi-modal vehicle trajectory generation and the impacts of surrounding vehicles on trajectory prediction under various circumstances.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2020.3009762</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7099-4424</orcidid><orcidid>https://orcid.org/0000-0002-5943-0326</orcidid><orcidid>https://orcid.org/0000-0002-6109-2522</orcidid><orcidid>https://orcid.org/0000-0003-3774-6247</orcidid><orcidid>https://orcid.org/0000-0003-0231-6837</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2022-01, Vol.23 (1), p.236-248
issn 1524-9050
1558-0016
language eng
recordid cdi_proquest_journals_2615164297
source IEEE Electronic Library (IEL) Journals
subjects Coders
Collaborative learning
Collaborative work
Gallium nitride
Generative adversarial networks
Intelligent transportation systems
Intelligent vehicles
Learning
Mathematical analysis
Predictive models
Qualitative analysis
spatio-temporal tensor fusion
Tensile stress
Tensors
Trajectories
Trajectory
vehicle trajectory prediction
Vehicles
title Multi-Vehicle Collaborative Learning for Trajectory Prediction With Spatio-Temporal Tensor Fusion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A03%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Vehicle%20Collaborative%20Learning%20for%20Trajectory%20Prediction%20With%20Spatio-Temporal%20Tensor%20Fusion&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Wang,%20Yu&rft.date=2022-01&rft.volume=23&rft.issue=1&rft.spage=236&rft.epage=248&rft.pages=236-248&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2020.3009762&rft_dat=%3Cproquest_cross%3E2615164297%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-1d6c8d79f9b9da71e6af0fa2b1f55130bf4e61dd4aa2dafededecb686f0b14af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2615164297&rft_id=info:pmid/&rft_ieee_id=9151374&rfr_iscdi=true