Loading…
Semantic Segmentation for Remote Sensing Images Based on Adaptive Feature Selection Network
Semantic segmentation plays a vital role in the segmentation of remote sensing field for its wide range of applications. The major current method for segmentation of remotely sensed imagery is using multiple scales strategy to improve the performance of segmentation networks. However, the ground obj...
Saved in:
Published in: | IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-79a9f9bc7a51a917d90c8baeedc7826f6945b5c970fb9b95b38f5072b46061f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-79a9f9bc7a51a917d90c8baeedc7826f6945b5c970fb9b95b38f5072b46061f3 |
container_end_page | 5 |
container_issue | |
container_start_page | 1 |
container_title | IEEE geoscience and remote sensing letters |
container_volume | 19 |
creator | Xiang, Shao Xie, Quangqi Wang, Mi |
description | Semantic segmentation plays a vital role in the segmentation of remote sensing field for its wide range of applications. The major current method for segmentation of remotely sensed imagery is using multiple scales strategy to improve the performance of segmentation networks. However, the ground object with uncertain scale in high-resolution aerial imagery is difficult to be segmented with conventional models. To address this problem, an adaptive feature selection module is designed, in which attention module learns weight contributions of each feature blocks in different scales. We employ the pyramid scene parsing network (PSPNet), DeepLabV3, and U-Net with the proposed module to conduct experiments on two benchmarks (the Vaihingen set and the WHU Building data set). The experimental results and comprehensive analysis validate the efficiency and practicability of the proposed method in semantic segmentation of remote sensing images. |
doi_str_mv | 10.1109/LGRS.2021.3049125 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2615512720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9340317</ieee_id><sourcerecordid>2615512720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-79a9f9bc7a51a917d90c8baeedc7826f6945b5c970fb9b95b38f5072b46061f3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwpeN2Zj6ZJLudwczAUtl0IXoQ0PRmdazuTTPHf27rh1Xk5PO858CB0S_CIEKweFrPlakQxJSOGM0UoP0MDwrlMMRfkvM8ZT7mSb5foKoQtxjSTUgzQ-wpq08TKJivY1NBEE6u2SVzrkyXUbYRu34Sq2STz2mwgJI8mQJl0yLg0-1h9QTIFEw--B3dg_9ovEL9b_3GNLpzZBbg5zSFaT5_Wk-d08TqbT8aL1FLFYiqUUU4VVhhOjCKiVNjKwgCUVkiau1xlvOBWCewKVSheMOk4FrTIcpwTx4bo_nh279vPA4Sot-3BN91HTfPOAaGC4o4iR8r6NgQPTu99VRv_ownWvULdK9S9Qn1S2HXujp0KAP55xTLMiGC_YOltVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615512720</pqid></control><display><type>article</type><title>Semantic Segmentation for Remote Sensing Images Based on Adaptive Feature Selection Network</title><source>IEEE Xplore (Online service)</source><creator>Xiang, Shao ; Xie, Quangqi ; Wang, Mi</creator><creatorcontrib>Xiang, Shao ; Xie, Quangqi ; Wang, Mi</creatorcontrib><description>Semantic segmentation plays a vital role in the segmentation of remote sensing field for its wide range of applications. The major current method for segmentation of remotely sensed imagery is using multiple scales strategy to improve the performance of segmentation networks. However, the ground object with uncertain scale in high-resolution aerial imagery is difficult to be segmented with conventional models. To address this problem, an adaptive feature selection module is designed, in which attention module learns weight contributions of each feature blocks in different scales. We employ the pyramid scene parsing network (PSPNet), DeepLabV3, and U-Net with the proposed module to conduct experiments on two benchmarks (the Vaihingen set and the WHU Building data set). The experimental results and comprehensive analysis validate the efficiency and practicability of the proposed method in semantic segmentation of remote sensing images.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2021.3049125</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Adaptive feature selection (AFS) ; Benchmarks ; Buildings ; Feature extraction ; Image processing ; Image resolution ; Image segmentation ; Imagery ; Modules ; Remote sensing ; remote sensing images ; Semantic segmentation ; Semantics ; Training</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-79a9f9bc7a51a917d90c8baeedc7826f6945b5c970fb9b95b38f5072b46061f3</citedby><cites>FETCH-LOGICAL-c293t-79a9f9bc7a51a917d90c8baeedc7826f6945b5c970fb9b95b38f5072b46061f3</cites><orcidid>0000-0002-2797-1937 ; 0000-0003-2799-5987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9340317$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Xiang, Shao</creatorcontrib><creatorcontrib>Xie, Quangqi</creatorcontrib><creatorcontrib>Wang, Mi</creatorcontrib><title>Semantic Segmentation for Remote Sensing Images Based on Adaptive Feature Selection Network</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Semantic segmentation plays a vital role in the segmentation of remote sensing field for its wide range of applications. The major current method for segmentation of remotely sensed imagery is using multiple scales strategy to improve the performance of segmentation networks. However, the ground object with uncertain scale in high-resolution aerial imagery is difficult to be segmented with conventional models. To address this problem, an adaptive feature selection module is designed, in which attention module learns weight contributions of each feature blocks in different scales. We employ the pyramid scene parsing network (PSPNet), DeepLabV3, and U-Net with the proposed module to conduct experiments on two benchmarks (the Vaihingen set and the WHU Building data set). The experimental results and comprehensive analysis validate the efficiency and practicability of the proposed method in semantic segmentation of remote sensing images.</description><subject>Adaptation models</subject><subject>Adaptive feature selection (AFS)</subject><subject>Benchmarks</subject><subject>Buildings</subject><subject>Feature extraction</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Imagery</subject><subject>Modules</subject><subject>Remote sensing</subject><subject>remote sensing images</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Training</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKc_QLwpeN2Zj6ZJLudwczAUtl0IXoQ0PRmdazuTTPHf27rh1Xk5PO858CB0S_CIEKweFrPlakQxJSOGM0UoP0MDwrlMMRfkvM8ZT7mSb5foKoQtxjSTUgzQ-wpq08TKJivY1NBEE6u2SVzrkyXUbYRu34Sq2STz2mwgJI8mQJl0yLg0-1h9QTIFEw--B3dg_9ovEL9b_3GNLpzZBbg5zSFaT5_Wk-d08TqbT8aL1FLFYiqUUU4VVhhOjCKiVNjKwgCUVkiau1xlvOBWCewKVSheMOk4FrTIcpwTx4bo_nh279vPA4Sot-3BN91HTfPOAaGC4o4iR8r6NgQPTu99VRv_ownWvULdK9S9Qn1S2HXujp0KAP55xTLMiGC_YOltVQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Xiang, Shao</creator><creator>Xie, Quangqi</creator><creator>Wang, Mi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2797-1937</orcidid><orcidid>https://orcid.org/0000-0003-2799-5987</orcidid></search><sort><creationdate>2022</creationdate><title>Semantic Segmentation for Remote Sensing Images Based on Adaptive Feature Selection Network</title><author>Xiang, Shao ; Xie, Quangqi ; Wang, Mi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-79a9f9bc7a51a917d90c8baeedc7826f6945b5c970fb9b95b38f5072b46061f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Adaptive feature selection (AFS)</topic><topic>Benchmarks</topic><topic>Buildings</topic><topic>Feature extraction</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Imagery</topic><topic>Modules</topic><topic>Remote sensing</topic><topic>remote sensing images</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Shao</creatorcontrib><creatorcontrib>Xie, Quangqi</creatorcontrib><creatorcontrib>Wang, Mi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Shao</au><au>Xie, Quangqi</au><au>Wang, Mi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semantic Segmentation for Remote Sensing Images Based on Adaptive Feature Selection Network</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Semantic segmentation plays a vital role in the segmentation of remote sensing field for its wide range of applications. The major current method for segmentation of remotely sensed imagery is using multiple scales strategy to improve the performance of segmentation networks. However, the ground object with uncertain scale in high-resolution aerial imagery is difficult to be segmented with conventional models. To address this problem, an adaptive feature selection module is designed, in which attention module learns weight contributions of each feature blocks in different scales. We employ the pyramid scene parsing network (PSPNet), DeepLabV3, and U-Net with the proposed module to conduct experiments on two benchmarks (the Vaihingen set and the WHU Building data set). The experimental results and comprehensive analysis validate the efficiency and practicability of the proposed method in semantic segmentation of remote sensing images.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2021.3049125</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2797-1937</orcidid><orcidid>https://orcid.org/0000-0003-2799-5987</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-598X |
ispartof | IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5 |
issn | 1545-598X 1558-0571 |
language | eng |
recordid | cdi_proquest_journals_2615512720 |
source | IEEE Xplore (Online service) |
subjects | Adaptation models Adaptive feature selection (AFS) Benchmarks Buildings Feature extraction Image processing Image resolution Image segmentation Imagery Modules Remote sensing remote sensing images Semantic segmentation Semantics Training |
title | Semantic Segmentation for Remote Sensing Images Based on Adaptive Feature Selection Network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A52%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semantic%20Segmentation%20for%20Remote%20Sensing%20Images%20Based%20on%20Adaptive%20Feature%20Selection%20Network&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Xiang,%20Shao&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2021.3049125&rft_dat=%3Cproquest_ieee_%3E2615512720%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-79a9f9bc7a51a917d90c8baeedc7826f6945b5c970fb9b95b38f5072b46061f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2615512720&rft_id=info:pmid/&rft_ieee_id=9340317&rfr_iscdi=true |