Loading…

Semantic Segmentation for Remote Sensing Images Based on Adaptive Feature Selection Network

Semantic segmentation plays a vital role in the segmentation of remote sensing field for its wide range of applications. The major current method for segmentation of remotely sensed imagery is using multiple scales strategy to improve the performance of segmentation networks. However, the ground obj...

Full description

Saved in:
Bibliographic Details
Published in:IEEE geoscience and remote sensing letters 2022, Vol.19, p.1-5
Main Authors: Xiang, Shao, Xie, Quangqi, Wang, Mi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-79a9f9bc7a51a917d90c8baeedc7826f6945b5c970fb9b95b38f5072b46061f3
cites cdi_FETCH-LOGICAL-c293t-79a9f9bc7a51a917d90c8baeedc7826f6945b5c970fb9b95b38f5072b46061f3
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 19
creator Xiang, Shao
Xie, Quangqi
Wang, Mi
description Semantic segmentation plays a vital role in the segmentation of remote sensing field for its wide range of applications. The major current method for segmentation of remotely sensed imagery is using multiple scales strategy to improve the performance of segmentation networks. However, the ground object with uncertain scale in high-resolution aerial imagery is difficult to be segmented with conventional models. To address this problem, an adaptive feature selection module is designed, in which attention module learns weight contributions of each feature blocks in different scales. We employ the pyramid scene parsing network (PSPNet), DeepLabV3, and U-Net with the proposed module to conduct experiments on two benchmarks (the Vaihingen set and the WHU Building data set). The experimental results and comprehensive analysis validate the efficiency and practicability of the proposed method in semantic segmentation of remote sensing images.
doi_str_mv 10.1109/LGRS.2021.3049125
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2615512720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9340317</ieee_id><sourcerecordid>2615512720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-79a9f9bc7a51a917d90c8baeedc7826f6945b5c970fb9b95b38f5072b46061f3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwpeN2Zj6ZJLudwczAUtl0IXoQ0PRmdazuTTPHf27rh1Xk5PO858CB0S_CIEKweFrPlakQxJSOGM0UoP0MDwrlMMRfkvM8ZT7mSb5foKoQtxjSTUgzQ-wpq08TKJivY1NBEE6u2SVzrkyXUbYRu34Sq2STz2mwgJI8mQJl0yLg0-1h9QTIFEw--B3dg_9ovEL9b_3GNLpzZBbg5zSFaT5_Wk-d08TqbT8aL1FLFYiqUUU4VVhhOjCKiVNjKwgCUVkiau1xlvOBWCewKVSheMOk4FrTIcpwTx4bo_nh279vPA4Sot-3BN91HTfPOAaGC4o4iR8r6NgQPTu99VRv_ownWvULdK9S9Qn1S2HXujp0KAP55xTLMiGC_YOltVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615512720</pqid></control><display><type>article</type><title>Semantic Segmentation for Remote Sensing Images Based on Adaptive Feature Selection Network</title><source>IEEE Xplore (Online service)</source><creator>Xiang, Shao ; Xie, Quangqi ; Wang, Mi</creator><creatorcontrib>Xiang, Shao ; Xie, Quangqi ; Wang, Mi</creatorcontrib><description>Semantic segmentation plays a vital role in the segmentation of remote sensing field for its wide range of applications. The major current method for segmentation of remotely sensed imagery is using multiple scales strategy to improve the performance of segmentation networks. However, the ground object with uncertain scale in high-resolution aerial imagery is difficult to be segmented with conventional models. To address this problem, an adaptive feature selection module is designed, in which attention module learns weight contributions of each feature blocks in different scales. We employ the pyramid scene parsing network (PSPNet), DeepLabV3, and U-Net with the proposed module to conduct experiments on two benchmarks (the Vaihingen set and the WHU Building data set). The experimental results and comprehensive analysis validate the efficiency and practicability of the proposed method in semantic segmentation of remote sensing images.</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2021.3049125</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Adaptive feature selection (AFS) ; Benchmarks ; Buildings ; Feature extraction ; Image processing ; Image resolution ; Image segmentation ; Imagery ; Modules ; Remote sensing ; remote sensing images ; Semantic segmentation ; Semantics ; Training</subject><ispartof>IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-79a9f9bc7a51a917d90c8baeedc7826f6945b5c970fb9b95b38f5072b46061f3</citedby><cites>FETCH-LOGICAL-c293t-79a9f9bc7a51a917d90c8baeedc7826f6945b5c970fb9b95b38f5072b46061f3</cites><orcidid>0000-0002-2797-1937 ; 0000-0003-2799-5987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9340317$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Xiang, Shao</creatorcontrib><creatorcontrib>Xie, Quangqi</creatorcontrib><creatorcontrib>Wang, Mi</creatorcontrib><title>Semantic Segmentation for Remote Sensing Images Based on Adaptive Feature Selection Network</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Semantic segmentation plays a vital role in the segmentation of remote sensing field for its wide range of applications. The major current method for segmentation of remotely sensed imagery is using multiple scales strategy to improve the performance of segmentation networks. However, the ground object with uncertain scale in high-resolution aerial imagery is difficult to be segmented with conventional models. To address this problem, an adaptive feature selection module is designed, in which attention module learns weight contributions of each feature blocks in different scales. We employ the pyramid scene parsing network (PSPNet), DeepLabV3, and U-Net with the proposed module to conduct experiments on two benchmarks (the Vaihingen set and the WHU Building data set). The experimental results and comprehensive analysis validate the efficiency and practicability of the proposed method in semantic segmentation of remote sensing images.</description><subject>Adaptation models</subject><subject>Adaptive feature selection (AFS)</subject><subject>Benchmarks</subject><subject>Buildings</subject><subject>Feature extraction</subject><subject>Image processing</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Imagery</subject><subject>Modules</subject><subject>Remote sensing</subject><subject>remote sensing images</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Training</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKc_QLwpeN2Zj6ZJLudwczAUtl0IXoQ0PRmdazuTTPHf27rh1Xk5PO858CB0S_CIEKweFrPlakQxJSOGM0UoP0MDwrlMMRfkvM8ZT7mSb5foKoQtxjSTUgzQ-wpq08TKJivY1NBEE6u2SVzrkyXUbYRu34Sq2STz2mwgJI8mQJl0yLg0-1h9QTIFEw--B3dg_9ovEL9b_3GNLpzZBbg5zSFaT5_Wk-d08TqbT8aL1FLFYiqUUU4VVhhOjCKiVNjKwgCUVkiau1xlvOBWCewKVSheMOk4FrTIcpwTx4bo_nh279vPA4Sot-3BN91HTfPOAaGC4o4iR8r6NgQPTu99VRv_ownWvULdK9S9Qn1S2HXujp0KAP55xTLMiGC_YOltVQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Xiang, Shao</creator><creator>Xie, Quangqi</creator><creator>Wang, Mi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2797-1937</orcidid><orcidid>https://orcid.org/0000-0003-2799-5987</orcidid></search><sort><creationdate>2022</creationdate><title>Semantic Segmentation for Remote Sensing Images Based on Adaptive Feature Selection Network</title><author>Xiang, Shao ; Xie, Quangqi ; Wang, Mi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-79a9f9bc7a51a917d90c8baeedc7826f6945b5c970fb9b95b38f5072b46061f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Adaptive feature selection (AFS)</topic><topic>Benchmarks</topic><topic>Buildings</topic><topic>Feature extraction</topic><topic>Image processing</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Imagery</topic><topic>Modules</topic><topic>Remote sensing</topic><topic>remote sensing images</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Shao</creatorcontrib><creatorcontrib>Xie, Quangqi</creatorcontrib><creatorcontrib>Wang, Mi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Shao</au><au>Xie, Quangqi</au><au>Wang, Mi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semantic Segmentation for Remote Sensing Images Based on Adaptive Feature Selection Network</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Semantic segmentation plays a vital role in the segmentation of remote sensing field for its wide range of applications. The major current method for segmentation of remotely sensed imagery is using multiple scales strategy to improve the performance of segmentation networks. However, the ground object with uncertain scale in high-resolution aerial imagery is difficult to be segmented with conventional models. To address this problem, an adaptive feature selection module is designed, in which attention module learns weight contributions of each feature blocks in different scales. We employ the pyramid scene parsing network (PSPNet), DeepLabV3, and U-Net with the proposed module to conduct experiments on two benchmarks (the Vaihingen set and the WHU Building data set). The experimental results and comprehensive analysis validate the efficiency and practicability of the proposed method in semantic segmentation of remote sensing images.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2021.3049125</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-2797-1937</orcidid><orcidid>https://orcid.org/0000-0003-2799-5987</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2022, Vol.19, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_journals_2615512720
source IEEE Xplore (Online service)
subjects Adaptation models
Adaptive feature selection (AFS)
Benchmarks
Buildings
Feature extraction
Image processing
Image resolution
Image segmentation
Imagery
Modules
Remote sensing
remote sensing images
Semantic segmentation
Semantics
Training
title Semantic Segmentation for Remote Sensing Images Based on Adaptive Feature Selection Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A52%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semantic%20Segmentation%20for%20Remote%20Sensing%20Images%20Based%20on%20Adaptive%20Feature%20Selection%20Network&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Xiang,%20Shao&rft.date=2022&rft.volume=19&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2021.3049125&rft_dat=%3Cproquest_ieee_%3E2615512720%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-79a9f9bc7a51a917d90c8baeedc7826f6945b5c970fb9b95b38f5072b46061f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2615512720&rft_id=info:pmid/&rft_ieee_id=9340317&rfr_iscdi=true