Loading…
Inflated 3D ConvNet context analysis for violence detection
According to the Wall Street Journal, one billion surveillance cameras will be deployed around the world by 2021. This amount of information can be hardly managed by humans. Using a Inflated 3D ConvNet as backbone, this paper introduces a novel automatic violence detection approach that outperforms...
Saved in:
Published in: | Machine vision and applications 2022, Vol.33 (1), Article 15 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-df79c3f375b36b512ca727bd82348877bf7b3d93106acb2b67546b875f9ad2313 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-df79c3f375b36b512ca727bd82348877bf7b3d93106acb2b67546b875f9ad2313 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | Machine vision and applications |
container_volume | 33 |
creator | Freire-Obregón, David Barra, Paola Castrillón-Santana, Modesto Marsico, Maria De |
description | According to the Wall Street Journal, one billion surveillance cameras will be deployed around the world by 2021. This amount of information can be hardly managed by humans. Using a Inflated 3D ConvNet as backbone, this paper introduces a novel automatic violence detection approach that outperforms state-of-the-art existing proposals. Most of those proposals consider a pre-processing step to only focus on some regions of interest in the scene, i.e., those actually containing a human subject. In this regard, this paper also reports the results of an extensive analysis on whether and how the context can affect or not the adopted classifier performance. The experiments show that context-free footage yields substantial deterioration of the classifier performance (2% to 5%) on publicly available datasets. However, they also demonstrate that performance stabilizes in context-free settings, no matter the level of context restriction applied. Finally, a cross-dataset experiment investigates the generalizability of results obtained in a single-collection experiment (same dataset used for training and testing) to cross-collection settings (different datasets used for training and testing). |
doi_str_mv | 10.1007/s00138-021-01264-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2615528985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2615528985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-df79c3f375b36b512ca727bd82348877bf7b3d93106acb2b67546b875f9ad2313</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA62gekxeupL4KRTe6DkkmkSljUpO02H_v6AjuXN2zON_h8gFwjtElRkhcFYQwlRARDBEmvIXqAMxwSwnEgqtDMENqzBIpcgxOSlkjhFoh2hm4XsYwmOq7ht42ixR3T742LsXqP2tjohn2pS9NSLnZ9Wnw0fmm89W72qd4Co6CGYo_-71z8Hp_97J4hKvnh-XiZgUd5bTCLgjlaKCCWcotw8QZQYTtJKGtlELYICztFMWIG2eJ5YK13ErBgjIdoZjOwcW0u8npY-tL1eu0zeNvRROOGSNSSTa2yNRyOZWSfdCb3L-bvNcY6W9JepKkR0n6R5JWI0QnqIzl-Obz3_Q_1Be-nWh-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615528985</pqid></control><display><type>article</type><title>Inflated 3D ConvNet context analysis for violence detection</title><source>Springer Link</source><creator>Freire-Obregón, David ; Barra, Paola ; Castrillón-Santana, Modesto ; Marsico, Maria De</creator><creatorcontrib>Freire-Obregón, David ; Barra, Paola ; Castrillón-Santana, Modesto ; Marsico, Maria De</creatorcontrib><description>According to the Wall Street Journal, one billion surveillance cameras will be deployed around the world by 2021. This amount of information can be hardly managed by humans. Using a Inflated 3D ConvNet as backbone, this paper introduces a novel automatic violence detection approach that outperforms state-of-the-art existing proposals. Most of those proposals consider a pre-processing step to only focus on some regions of interest in the scene, i.e., those actually containing a human subject. In this regard, this paper also reports the results of an extensive analysis on whether and how the context can affect or not the adopted classifier performance. The experiments show that context-free footage yields substantial deterioration of the classifier performance (2% to 5%) on publicly available datasets. However, they also demonstrate that performance stabilizes in context-free settings, no matter the level of context restriction applied. Finally, a cross-dataset experiment investigates the generalizability of results obtained in a single-collection experiment (same dataset used for training and testing) to cross-collection settings (different datasets used for training and testing).</description><identifier>ISSN: 0932-8092</identifier><identifier>EISSN: 1432-1769</identifier><identifier>DOI: 10.1007/s00138-021-01264-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classifiers ; Communications Engineering ; Computer Science ; Context ; Datasets ; Image Processing and Computer Vision ; Networks ; Pattern Recognition ; Proposals ; Robotics and Intelligent Systems ; Special Issue on 25th ICPR - Computer Vision ; Special Issue Paper ; Training ; Violence ; Vision systems</subject><ispartof>Machine vision and applications, 2022, Vol.33 (1), Article 15</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-df79c3f375b36b512ca727bd82348877bf7b3d93106acb2b67546b875f9ad2313</citedby><cites>FETCH-LOGICAL-c363t-df79c3f375b36b512ca727bd82348877bf7b3d93106acb2b67546b875f9ad2313</cites><orcidid>0000-0002-7692-0626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Freire-Obregón, David</creatorcontrib><creatorcontrib>Barra, Paola</creatorcontrib><creatorcontrib>Castrillón-Santana, Modesto</creatorcontrib><creatorcontrib>Marsico, Maria De</creatorcontrib><title>Inflated 3D ConvNet context analysis for violence detection</title><title>Machine vision and applications</title><addtitle>Machine Vision and Applications</addtitle><description>According to the Wall Street Journal, one billion surveillance cameras will be deployed around the world by 2021. This amount of information can be hardly managed by humans. Using a Inflated 3D ConvNet as backbone, this paper introduces a novel automatic violence detection approach that outperforms state-of-the-art existing proposals. Most of those proposals consider a pre-processing step to only focus on some regions of interest in the scene, i.e., those actually containing a human subject. In this regard, this paper also reports the results of an extensive analysis on whether and how the context can affect or not the adopted classifier performance. The experiments show that context-free footage yields substantial deterioration of the classifier performance (2% to 5%) on publicly available datasets. However, they also demonstrate that performance stabilizes in context-free settings, no matter the level of context restriction applied. Finally, a cross-dataset experiment investigates the generalizability of results obtained in a single-collection experiment (same dataset used for training and testing) to cross-collection settings (different datasets used for training and testing).</description><subject>Classifiers</subject><subject>Communications Engineering</subject><subject>Computer Science</subject><subject>Context</subject><subject>Datasets</subject><subject>Image Processing and Computer Vision</subject><subject>Networks</subject><subject>Pattern Recognition</subject><subject>Proposals</subject><subject>Robotics and Intelligent Systems</subject><subject>Special Issue on 25th ICPR - Computer Vision</subject><subject>Special Issue Paper</subject><subject>Training</subject><subject>Violence</subject><subject>Vision systems</subject><issn>0932-8092</issn><issn>1432-1769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wNWA62gekxeupL4KRTe6DkkmkSljUpO02H_v6AjuXN2zON_h8gFwjtElRkhcFYQwlRARDBEmvIXqAMxwSwnEgqtDMENqzBIpcgxOSlkjhFoh2hm4XsYwmOq7ht42ixR3T742LsXqP2tjohn2pS9NSLnZ9Wnw0fmm89W72qd4Co6CGYo_-71z8Hp_97J4hKvnh-XiZgUd5bTCLgjlaKCCWcotw8QZQYTtJKGtlELYICztFMWIG2eJ5YK13ErBgjIdoZjOwcW0u8npY-tL1eu0zeNvRROOGSNSSTa2yNRyOZWSfdCb3L-bvNcY6W9JepKkR0n6R5JWI0QnqIzl-Obz3_Q_1Be-nWh-</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Freire-Obregón, David</creator><creator>Barra, Paola</creator><creator>Castrillón-Santana, Modesto</creator><creator>Marsico, Maria De</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-7692-0626</orcidid></search><sort><creationdate>2022</creationdate><title>Inflated 3D ConvNet context analysis for violence detection</title><author>Freire-Obregón, David ; Barra, Paola ; Castrillón-Santana, Modesto ; Marsico, Maria De</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-df79c3f375b36b512ca727bd82348877bf7b3d93106acb2b67546b875f9ad2313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Classifiers</topic><topic>Communications Engineering</topic><topic>Computer Science</topic><topic>Context</topic><topic>Datasets</topic><topic>Image Processing and Computer Vision</topic><topic>Networks</topic><topic>Pattern Recognition</topic><topic>Proposals</topic><topic>Robotics and Intelligent Systems</topic><topic>Special Issue on 25th ICPR - Computer Vision</topic><topic>Special Issue Paper</topic><topic>Training</topic><topic>Violence</topic><topic>Vision systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freire-Obregón, David</creatorcontrib><creatorcontrib>Barra, Paola</creatorcontrib><creatorcontrib>Castrillón-Santana, Modesto</creatorcontrib><creatorcontrib>Marsico, Maria De</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Machine vision and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freire-Obregón, David</au><au>Barra, Paola</au><au>Castrillón-Santana, Modesto</au><au>Marsico, Maria De</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inflated 3D ConvNet context analysis for violence detection</atitle><jtitle>Machine vision and applications</jtitle><stitle>Machine Vision and Applications</stitle><date>2022</date><risdate>2022</risdate><volume>33</volume><issue>1</issue><artnum>15</artnum><issn>0932-8092</issn><eissn>1432-1769</eissn><abstract>According to the Wall Street Journal, one billion surveillance cameras will be deployed around the world by 2021. This amount of information can be hardly managed by humans. Using a Inflated 3D ConvNet as backbone, this paper introduces a novel automatic violence detection approach that outperforms state-of-the-art existing proposals. Most of those proposals consider a pre-processing step to only focus on some regions of interest in the scene, i.e., those actually containing a human subject. In this regard, this paper also reports the results of an extensive analysis on whether and how the context can affect or not the adopted classifier performance. The experiments show that context-free footage yields substantial deterioration of the classifier performance (2% to 5%) on publicly available datasets. However, they also demonstrate that performance stabilizes in context-free settings, no matter the level of context restriction applied. Finally, a cross-dataset experiment investigates the generalizability of results obtained in a single-collection experiment (same dataset used for training and testing) to cross-collection settings (different datasets used for training and testing).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00138-021-01264-9</doi><orcidid>https://orcid.org/0000-0002-7692-0626</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0932-8092 |
ispartof | Machine vision and applications, 2022, Vol.33 (1), Article 15 |
issn | 0932-8092 1432-1769 |
language | eng |
recordid | cdi_proquest_journals_2615528985 |
source | Springer Link |
subjects | Classifiers Communications Engineering Computer Science Context Datasets Image Processing and Computer Vision Networks Pattern Recognition Proposals Robotics and Intelligent Systems Special Issue on 25th ICPR - Computer Vision Special Issue Paper Training Violence Vision systems |
title | Inflated 3D ConvNet context analysis for violence detection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inflated%203D%20ConvNet%20context%20analysis%20for%20violence%20detection&rft.jtitle=Machine%20vision%20and%20applications&rft.au=Freire-Obreg%C3%B3n,%20David&rft.date=2022&rft.volume=33&rft.issue=1&rft.artnum=15&rft.issn=0932-8092&rft.eissn=1432-1769&rft_id=info:doi/10.1007/s00138-021-01264-9&rft_dat=%3Cproquest_cross%3E2615528985%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-df79c3f375b36b512ca727bd82348877bf7b3d93106acb2b67546b875f9ad2313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2615528985&rft_id=info:pmid/&rfr_iscdi=true |