Loading…
Synthesis of isoeugenol biobased epoxy polymer by forming α‐hydroxyl ester and degradation studies
The synthesis of bio‐based monomers and polymers from renewable feedstock, such as plant biomass, is desirable because of the depletion of fossil fuel resources and the reliance of thermosetting epoxy resin on non‐renewable petrochemical monomers. Despite the excellent polymeric properties of bisphe...
Saved in:
Published in: | Journal of applied polymer science 2022-03, Vol.139 (12), p.n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2970-c4c9eb4379894292f7b60acb983b6fba6543a54e5cb14f2d1548de17ece378403 |
---|---|
cites | cdi_FETCH-LOGICAL-c2970-c4c9eb4379894292f7b60acb983b6fba6543a54e5cb14f2d1548de17ece378403 |
container_end_page | n/a |
container_issue | 12 |
container_start_page | |
container_title | Journal of applied polymer science |
container_volume | 139 |
creator | Sivanesan, Dharmalingam Seo, Bongkuk Lim, Choong‐Sun Song, Jinyoung Kim, Hyeon‐Gook |
description | The synthesis of bio‐based monomers and polymers from renewable feedstock, such as plant biomass, is desirable because of the depletion of fossil fuel resources and the reliance of thermosetting epoxy resin on non‐renewable petrochemical monomers. Despite the excellent polymeric properties of bisphenol‐based epoxy resins, these negatively impact human health. Herein, the synthesis of self‐curable epoxy polymers from the bio‐based material isoeugenol by forming α‐hydroxyl esters is reported. The epoxides are named AB (single epoxide and ester groups) and A2B2 (double epoxide and ester groups), based on the number of active ester and epoxide groups. The materials derived from the bio‐based material, AB and A2B2, were initiated with and without the catalyst N,N′‐dimethylaminopyridine (DMAP) and curing agent diaminodiphenylmethane. Without the catalyst, AB and A2B2 self‐polymerized at 247 and 210°C, respectively. Notably, the polymerization temperatures for AB and A2B2 decreased after the addition of DMAP. The self‐cured epoxy resin without the catalyst showed the highest thermal stability and glass transition temperature (Tg = 156°C). Degradation and recovery studies suggested forward that 51% of the material could be recovered and 94% of the polymer could be degraded from the self‐cured A2B2 in 25 wt% NaOH solution. |
doi_str_mv | 10.1002/app.51830 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2615606193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2615606193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2970-c4c9eb4379894292f7b60acb983b6fba6543a54e5cb14f2d1548de17ece378403</originalsourceid><addsrcrecordid>eNp1kE1OwzAQRi0EEqWw4AaWWLFIayeOEy-rij-pEpWAtWUnk9ZVGgc7EWTHEbgKF-EQnARD2LKaxXvfzOhD6JySGSUknqu2naU0T8gBmlAisojxOD9Ek8BolAuRHqMT73eEUJoSPkHwMDTdFrzx2FbYeAv9BhpbY22sVh5KDK19HXBr62EPDusBV9btTbPBnx9fb-_boXSB1xh8F7BqSlzCxqlSdcY22Hd9acCfoqNK1R7O_uYUPV1fPS5vo9X9zd1ysYqKWGQkKlghQLMkE7lgsYirTHOiCi3yRPNKK56yRKUM0kJTVsUlTVleAs2ggCTLGUmm6GLc2zr73IeX5M72rgknZcxpygmnIgnW5WgVznrvoJKtM3vlBkmJ_GlRhhblb4vBnY_ui6lh-F-Ui_V6THwDKtR24A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615606193</pqid></control><display><type>article</type><title>Synthesis of isoeugenol biobased epoxy polymer by forming α‐hydroxyl ester and degradation studies</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Sivanesan, Dharmalingam ; Seo, Bongkuk ; Lim, Choong‐Sun ; Song, Jinyoung ; Kim, Hyeon‐Gook</creator><creatorcontrib>Sivanesan, Dharmalingam ; Seo, Bongkuk ; Lim, Choong‐Sun ; Song, Jinyoung ; Kim, Hyeon‐Gook</creatorcontrib><description>The synthesis of bio‐based monomers and polymers from renewable feedstock, such as plant biomass, is desirable because of the depletion of fossil fuel resources and the reliance of thermosetting epoxy resin on non‐renewable petrochemical monomers. Despite the excellent polymeric properties of bisphenol‐based epoxy resins, these negatively impact human health. Herein, the synthesis of self‐curable epoxy polymers from the bio‐based material isoeugenol by forming α‐hydroxyl esters is reported. The epoxides are named AB (single epoxide and ester groups) and A2B2 (double epoxide and ester groups), based on the number of active ester and epoxide groups. The materials derived from the bio‐based material, AB and A2B2, were initiated with and without the catalyst N,N′‐dimethylaminopyridine (DMAP) and curing agent diaminodiphenylmethane. Without the catalyst, AB and A2B2 self‐polymerized at 247 and 210°C, respectively. Notably, the polymerization temperatures for AB and A2B2 decreased after the addition of DMAP. The self‐cured epoxy resin without the catalyst showed the highest thermal stability and glass transition temperature (Tg = 156°C). Degradation and recovery studies suggested forward that 51% of the material could be recovered and 94% of the polymer could be degraded from the self‐cured A2B2 in 25 wt% NaOH solution.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.51830</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>bio‐based material ; Catalysts ; Chemical synthesis ; Curing agents ; Degradation ; Depletion ; epoxy polymer ; Epoxy resins ; Esters ; Fossil fuels ; Glass transition temperature ; high thermal stability ; Materials science ; Methylene dianiline ; Monomers ; polymer decomposition ; Polymerization ; Polymers ; Rapid prototyping ; Thermal stability ; α‐hydroxyl esters</subject><ispartof>Journal of applied polymer science, 2022-03, Vol.139 (12), p.n/a</ispartof><rights>2021 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2970-c4c9eb4379894292f7b60acb983b6fba6543a54e5cb14f2d1548de17ece378403</citedby><cites>FETCH-LOGICAL-c2970-c4c9eb4379894292f7b60acb983b6fba6543a54e5cb14f2d1548de17ece378403</cites><orcidid>0000-0001-7725-8147</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sivanesan, Dharmalingam</creatorcontrib><creatorcontrib>Seo, Bongkuk</creatorcontrib><creatorcontrib>Lim, Choong‐Sun</creatorcontrib><creatorcontrib>Song, Jinyoung</creatorcontrib><creatorcontrib>Kim, Hyeon‐Gook</creatorcontrib><title>Synthesis of isoeugenol biobased epoxy polymer by forming α‐hydroxyl ester and degradation studies</title><title>Journal of applied polymer science</title><description>The synthesis of bio‐based monomers and polymers from renewable feedstock, such as plant biomass, is desirable because of the depletion of fossil fuel resources and the reliance of thermosetting epoxy resin on non‐renewable petrochemical monomers. Despite the excellent polymeric properties of bisphenol‐based epoxy resins, these negatively impact human health. Herein, the synthesis of self‐curable epoxy polymers from the bio‐based material isoeugenol by forming α‐hydroxyl esters is reported. The epoxides are named AB (single epoxide and ester groups) and A2B2 (double epoxide and ester groups), based on the number of active ester and epoxide groups. The materials derived from the bio‐based material, AB and A2B2, were initiated with and without the catalyst N,N′‐dimethylaminopyridine (DMAP) and curing agent diaminodiphenylmethane. Without the catalyst, AB and A2B2 self‐polymerized at 247 and 210°C, respectively. Notably, the polymerization temperatures for AB and A2B2 decreased after the addition of DMAP. The self‐cured epoxy resin without the catalyst showed the highest thermal stability and glass transition temperature (Tg = 156°C). Degradation and recovery studies suggested forward that 51% of the material could be recovered and 94% of the polymer could be degraded from the self‐cured A2B2 in 25 wt% NaOH solution.</description><subject>bio‐based material</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Curing agents</subject><subject>Degradation</subject><subject>Depletion</subject><subject>epoxy polymer</subject><subject>Epoxy resins</subject><subject>Esters</subject><subject>Fossil fuels</subject><subject>Glass transition temperature</subject><subject>high thermal stability</subject><subject>Materials science</subject><subject>Methylene dianiline</subject><subject>Monomers</subject><subject>polymer decomposition</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Rapid prototyping</subject><subject>Thermal stability</subject><subject>α‐hydroxyl esters</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQRi0EEqWw4AaWWLFIayeOEy-rij-pEpWAtWUnk9ZVGgc7EWTHEbgKF-EQnARD2LKaxXvfzOhD6JySGSUknqu2naU0T8gBmlAisojxOD9Ek8BolAuRHqMT73eEUJoSPkHwMDTdFrzx2FbYeAv9BhpbY22sVh5KDK19HXBr62EPDusBV9btTbPBnx9fb-_boXSB1xh8F7BqSlzCxqlSdcY22Hd9acCfoqNK1R7O_uYUPV1fPS5vo9X9zd1ysYqKWGQkKlghQLMkE7lgsYirTHOiCi3yRPNKK56yRKUM0kJTVsUlTVleAs2ggCTLGUmm6GLc2zr73IeX5M72rgknZcxpygmnIgnW5WgVznrvoJKtM3vlBkmJ_GlRhhblb4vBnY_ui6lh-F-Ui_V6THwDKtR24A</recordid><startdate>20220320</startdate><enddate>20220320</enddate><creator>Sivanesan, Dharmalingam</creator><creator>Seo, Bongkuk</creator><creator>Lim, Choong‐Sun</creator><creator>Song, Jinyoung</creator><creator>Kim, Hyeon‐Gook</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-7725-8147</orcidid></search><sort><creationdate>20220320</creationdate><title>Synthesis of isoeugenol biobased epoxy polymer by forming α‐hydroxyl ester and degradation studies</title><author>Sivanesan, Dharmalingam ; Seo, Bongkuk ; Lim, Choong‐Sun ; Song, Jinyoung ; Kim, Hyeon‐Gook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2970-c4c9eb4379894292f7b60acb983b6fba6543a54e5cb14f2d1548de17ece378403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>bio‐based material</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Curing agents</topic><topic>Degradation</topic><topic>Depletion</topic><topic>epoxy polymer</topic><topic>Epoxy resins</topic><topic>Esters</topic><topic>Fossil fuels</topic><topic>Glass transition temperature</topic><topic>high thermal stability</topic><topic>Materials science</topic><topic>Methylene dianiline</topic><topic>Monomers</topic><topic>polymer decomposition</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Rapid prototyping</topic><topic>Thermal stability</topic><topic>α‐hydroxyl esters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sivanesan, Dharmalingam</creatorcontrib><creatorcontrib>Seo, Bongkuk</creatorcontrib><creatorcontrib>Lim, Choong‐Sun</creatorcontrib><creatorcontrib>Song, Jinyoung</creatorcontrib><creatorcontrib>Kim, Hyeon‐Gook</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sivanesan, Dharmalingam</au><au>Seo, Bongkuk</au><au>Lim, Choong‐Sun</au><au>Song, Jinyoung</au><au>Kim, Hyeon‐Gook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of isoeugenol biobased epoxy polymer by forming α‐hydroxyl ester and degradation studies</atitle><jtitle>Journal of applied polymer science</jtitle><date>2022-03-20</date><risdate>2022</risdate><volume>139</volume><issue>12</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>The synthesis of bio‐based monomers and polymers from renewable feedstock, such as plant biomass, is desirable because of the depletion of fossil fuel resources and the reliance of thermosetting epoxy resin on non‐renewable petrochemical monomers. Despite the excellent polymeric properties of bisphenol‐based epoxy resins, these negatively impact human health. Herein, the synthesis of self‐curable epoxy polymers from the bio‐based material isoeugenol by forming α‐hydroxyl esters is reported. The epoxides are named AB (single epoxide and ester groups) and A2B2 (double epoxide and ester groups), based on the number of active ester and epoxide groups. The materials derived from the bio‐based material, AB and A2B2, were initiated with and without the catalyst N,N′‐dimethylaminopyridine (DMAP) and curing agent diaminodiphenylmethane. Without the catalyst, AB and A2B2 self‐polymerized at 247 and 210°C, respectively. Notably, the polymerization temperatures for AB and A2B2 decreased after the addition of DMAP. The self‐cured epoxy resin without the catalyst showed the highest thermal stability and glass transition temperature (Tg = 156°C). Degradation and recovery studies suggested forward that 51% of the material could be recovered and 94% of the polymer could be degraded from the self‐cured A2B2 in 25 wt% NaOH solution.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/app.51830</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7725-8147</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2022-03, Vol.139 (12), p.n/a |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_proquest_journals_2615606193 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | bio‐based material Catalysts Chemical synthesis Curing agents Degradation Depletion epoxy polymer Epoxy resins Esters Fossil fuels Glass transition temperature high thermal stability Materials science Methylene dianiline Monomers polymer decomposition Polymerization Polymers Rapid prototyping Thermal stability α‐hydroxyl esters |
title | Synthesis of isoeugenol biobased epoxy polymer by forming α‐hydroxyl ester and degradation studies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A52%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20isoeugenol%20biobased%20epoxy%20polymer%20by%20forming%20%CE%B1%E2%80%90hydroxyl%20ester%20and%20degradation%20studies&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Sivanesan,%20Dharmalingam&rft.date=2022-03-20&rft.volume=139&rft.issue=12&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.51830&rft_dat=%3Cproquest_cross%3E2615606193%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2970-c4c9eb4379894292f7b60acb983b6fba6543a54e5cb14f2d1548de17ece378403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2615606193&rft_id=info:pmid/&rfr_iscdi=true |