Loading…

Synthesis of isoeugenol biobased epoxy polymer by forming α‐hydroxyl ester and degradation studies

The synthesis of bio‐based monomers and polymers from renewable feedstock, such as plant biomass, is desirable because of the depletion of fossil fuel resources and the reliance of thermosetting epoxy resin on non‐renewable petrochemical monomers. Despite the excellent polymeric properties of bisphe...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2022-03, Vol.139 (12), p.n/a
Main Authors: Sivanesan, Dharmalingam, Seo, Bongkuk, Lim, Choong‐Sun, Song, Jinyoung, Kim, Hyeon‐Gook
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2970-c4c9eb4379894292f7b60acb983b6fba6543a54e5cb14f2d1548de17ece378403
cites cdi_FETCH-LOGICAL-c2970-c4c9eb4379894292f7b60acb983b6fba6543a54e5cb14f2d1548de17ece378403
container_end_page n/a
container_issue 12
container_start_page
container_title Journal of applied polymer science
container_volume 139
creator Sivanesan, Dharmalingam
Seo, Bongkuk
Lim, Choong‐Sun
Song, Jinyoung
Kim, Hyeon‐Gook
description The synthesis of bio‐based monomers and polymers from renewable feedstock, such as plant biomass, is desirable because of the depletion of fossil fuel resources and the reliance of thermosetting epoxy resin on non‐renewable petrochemical monomers. Despite the excellent polymeric properties of bisphenol‐based epoxy resins, these negatively impact human health. Herein, the synthesis of self‐curable epoxy polymers from the bio‐based material isoeugenol by forming α‐hydroxyl esters is reported. The epoxides are named AB (single epoxide and ester groups) and A2B2 (double epoxide and ester groups), based on the number of active ester and epoxide groups. The materials derived from the bio‐based material, AB and A2B2, were initiated with and without the catalyst N,N′‐dimethylaminopyridine (DMAP) and curing agent diaminodiphenylmethane. Without the catalyst, AB and A2B2 self‐polymerized at 247 and 210°C, respectively. Notably, the polymerization temperatures for AB and A2B2 decreased after the addition of DMAP. The self‐cured epoxy resin without the catalyst showed the highest thermal stability and glass transition temperature (Tg = 156°C). Degradation and recovery studies suggested forward that 51% of the material could be recovered and 94% of the polymer could be degraded from the self‐cured A2B2 in 25 wt% NaOH solution.
doi_str_mv 10.1002/app.51830
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2615606193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2615606193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2970-c4c9eb4379894292f7b60acb983b6fba6543a54e5cb14f2d1548de17ece378403</originalsourceid><addsrcrecordid>eNp1kE1OwzAQRi0EEqWw4AaWWLFIayeOEy-rij-pEpWAtWUnk9ZVGgc7EWTHEbgKF-EQnARD2LKaxXvfzOhD6JySGSUknqu2naU0T8gBmlAisojxOD9Ek8BolAuRHqMT73eEUJoSPkHwMDTdFrzx2FbYeAv9BhpbY22sVh5KDK19HXBr62EPDusBV9btTbPBnx9fb-_boXSB1xh8F7BqSlzCxqlSdcY22Hd9acCfoqNK1R7O_uYUPV1fPS5vo9X9zd1ysYqKWGQkKlghQLMkE7lgsYirTHOiCi3yRPNKK56yRKUM0kJTVsUlTVleAs2ggCTLGUmm6GLc2zr73IeX5M72rgknZcxpygmnIgnW5WgVznrvoJKtM3vlBkmJ_GlRhhblb4vBnY_ui6lh-F-Ui_V6THwDKtR24A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615606193</pqid></control><display><type>article</type><title>Synthesis of isoeugenol biobased epoxy polymer by forming α‐hydroxyl ester and degradation studies</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Sivanesan, Dharmalingam ; Seo, Bongkuk ; Lim, Choong‐Sun ; Song, Jinyoung ; Kim, Hyeon‐Gook</creator><creatorcontrib>Sivanesan, Dharmalingam ; Seo, Bongkuk ; Lim, Choong‐Sun ; Song, Jinyoung ; Kim, Hyeon‐Gook</creatorcontrib><description>The synthesis of bio‐based monomers and polymers from renewable feedstock, such as plant biomass, is desirable because of the depletion of fossil fuel resources and the reliance of thermosetting epoxy resin on non‐renewable petrochemical monomers. Despite the excellent polymeric properties of bisphenol‐based epoxy resins, these negatively impact human health. Herein, the synthesis of self‐curable epoxy polymers from the bio‐based material isoeugenol by forming α‐hydroxyl esters is reported. The epoxides are named AB (single epoxide and ester groups) and A2B2 (double epoxide and ester groups), based on the number of active ester and epoxide groups. The materials derived from the bio‐based material, AB and A2B2, were initiated with and without the catalyst N,N′‐dimethylaminopyridine (DMAP) and curing agent diaminodiphenylmethane. Without the catalyst, AB and A2B2 self‐polymerized at 247 and 210°C, respectively. Notably, the polymerization temperatures for AB and A2B2 decreased after the addition of DMAP. The self‐cured epoxy resin without the catalyst showed the highest thermal stability and glass transition temperature (Tg = 156°C). Degradation and recovery studies suggested forward that 51% of the material could be recovered and 94% of the polymer could be degraded from the self‐cured A2B2 in 25 wt% NaOH solution.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.51830</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>bio‐based material ; Catalysts ; Chemical synthesis ; Curing agents ; Degradation ; Depletion ; epoxy polymer ; Epoxy resins ; Esters ; Fossil fuels ; Glass transition temperature ; high thermal stability ; Materials science ; Methylene dianiline ; Monomers ; polymer decomposition ; Polymerization ; Polymers ; Rapid prototyping ; Thermal stability ; α‐hydroxyl esters</subject><ispartof>Journal of applied polymer science, 2022-03, Vol.139 (12), p.n/a</ispartof><rights>2021 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2970-c4c9eb4379894292f7b60acb983b6fba6543a54e5cb14f2d1548de17ece378403</citedby><cites>FETCH-LOGICAL-c2970-c4c9eb4379894292f7b60acb983b6fba6543a54e5cb14f2d1548de17ece378403</cites><orcidid>0000-0001-7725-8147</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sivanesan, Dharmalingam</creatorcontrib><creatorcontrib>Seo, Bongkuk</creatorcontrib><creatorcontrib>Lim, Choong‐Sun</creatorcontrib><creatorcontrib>Song, Jinyoung</creatorcontrib><creatorcontrib>Kim, Hyeon‐Gook</creatorcontrib><title>Synthesis of isoeugenol biobased epoxy polymer by forming α‐hydroxyl ester and degradation studies</title><title>Journal of applied polymer science</title><description>The synthesis of bio‐based monomers and polymers from renewable feedstock, such as plant biomass, is desirable because of the depletion of fossil fuel resources and the reliance of thermosetting epoxy resin on non‐renewable petrochemical monomers. Despite the excellent polymeric properties of bisphenol‐based epoxy resins, these negatively impact human health. Herein, the synthesis of self‐curable epoxy polymers from the bio‐based material isoeugenol by forming α‐hydroxyl esters is reported. The epoxides are named AB (single epoxide and ester groups) and A2B2 (double epoxide and ester groups), based on the number of active ester and epoxide groups. The materials derived from the bio‐based material, AB and A2B2, were initiated with and without the catalyst N,N′‐dimethylaminopyridine (DMAP) and curing agent diaminodiphenylmethane. Without the catalyst, AB and A2B2 self‐polymerized at 247 and 210°C, respectively. Notably, the polymerization temperatures for AB and A2B2 decreased after the addition of DMAP. The self‐cured epoxy resin without the catalyst showed the highest thermal stability and glass transition temperature (Tg = 156°C). Degradation and recovery studies suggested forward that 51% of the material could be recovered and 94% of the polymer could be degraded from the self‐cured A2B2 in 25 wt% NaOH solution.</description><subject>bio‐based material</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Curing agents</subject><subject>Degradation</subject><subject>Depletion</subject><subject>epoxy polymer</subject><subject>Epoxy resins</subject><subject>Esters</subject><subject>Fossil fuels</subject><subject>Glass transition temperature</subject><subject>high thermal stability</subject><subject>Materials science</subject><subject>Methylene dianiline</subject><subject>Monomers</subject><subject>polymer decomposition</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Rapid prototyping</subject><subject>Thermal stability</subject><subject>α‐hydroxyl esters</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQRi0EEqWw4AaWWLFIayeOEy-rij-pEpWAtWUnk9ZVGgc7EWTHEbgKF-EQnARD2LKaxXvfzOhD6JySGSUknqu2naU0T8gBmlAisojxOD9Ek8BolAuRHqMT73eEUJoSPkHwMDTdFrzx2FbYeAv9BhpbY22sVh5KDK19HXBr62EPDusBV9btTbPBnx9fb-_boXSB1xh8F7BqSlzCxqlSdcY22Hd9acCfoqNK1R7O_uYUPV1fPS5vo9X9zd1ysYqKWGQkKlghQLMkE7lgsYirTHOiCi3yRPNKK56yRKUM0kJTVsUlTVleAs2ggCTLGUmm6GLc2zr73IeX5M72rgknZcxpygmnIgnW5WgVznrvoJKtM3vlBkmJ_GlRhhblb4vBnY_ui6lh-F-Ui_V6THwDKtR24A</recordid><startdate>20220320</startdate><enddate>20220320</enddate><creator>Sivanesan, Dharmalingam</creator><creator>Seo, Bongkuk</creator><creator>Lim, Choong‐Sun</creator><creator>Song, Jinyoung</creator><creator>Kim, Hyeon‐Gook</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-7725-8147</orcidid></search><sort><creationdate>20220320</creationdate><title>Synthesis of isoeugenol biobased epoxy polymer by forming α‐hydroxyl ester and degradation studies</title><author>Sivanesan, Dharmalingam ; Seo, Bongkuk ; Lim, Choong‐Sun ; Song, Jinyoung ; Kim, Hyeon‐Gook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2970-c4c9eb4379894292f7b60acb983b6fba6543a54e5cb14f2d1548de17ece378403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>bio‐based material</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Curing agents</topic><topic>Degradation</topic><topic>Depletion</topic><topic>epoxy polymer</topic><topic>Epoxy resins</topic><topic>Esters</topic><topic>Fossil fuels</topic><topic>Glass transition temperature</topic><topic>high thermal stability</topic><topic>Materials science</topic><topic>Methylene dianiline</topic><topic>Monomers</topic><topic>polymer decomposition</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Rapid prototyping</topic><topic>Thermal stability</topic><topic>α‐hydroxyl esters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sivanesan, Dharmalingam</creatorcontrib><creatorcontrib>Seo, Bongkuk</creatorcontrib><creatorcontrib>Lim, Choong‐Sun</creatorcontrib><creatorcontrib>Song, Jinyoung</creatorcontrib><creatorcontrib>Kim, Hyeon‐Gook</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sivanesan, Dharmalingam</au><au>Seo, Bongkuk</au><au>Lim, Choong‐Sun</au><au>Song, Jinyoung</au><au>Kim, Hyeon‐Gook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of isoeugenol biobased epoxy polymer by forming α‐hydroxyl ester and degradation studies</atitle><jtitle>Journal of applied polymer science</jtitle><date>2022-03-20</date><risdate>2022</risdate><volume>139</volume><issue>12</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>The synthesis of bio‐based monomers and polymers from renewable feedstock, such as plant biomass, is desirable because of the depletion of fossil fuel resources and the reliance of thermosetting epoxy resin on non‐renewable petrochemical monomers. Despite the excellent polymeric properties of bisphenol‐based epoxy resins, these negatively impact human health. Herein, the synthesis of self‐curable epoxy polymers from the bio‐based material isoeugenol by forming α‐hydroxyl esters is reported. The epoxides are named AB (single epoxide and ester groups) and A2B2 (double epoxide and ester groups), based on the number of active ester and epoxide groups. The materials derived from the bio‐based material, AB and A2B2, were initiated with and without the catalyst N,N′‐dimethylaminopyridine (DMAP) and curing agent diaminodiphenylmethane. Without the catalyst, AB and A2B2 self‐polymerized at 247 and 210°C, respectively. Notably, the polymerization temperatures for AB and A2B2 decreased after the addition of DMAP. The self‐cured epoxy resin without the catalyst showed the highest thermal stability and glass transition temperature (Tg = 156°C). Degradation and recovery studies suggested forward that 51% of the material could be recovered and 94% of the polymer could be degraded from the self‐cured A2B2 in 25 wt% NaOH solution.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/app.51830</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7725-8147</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2022-03, Vol.139 (12), p.n/a
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_2615606193
source Wiley-Blackwell Read & Publish Collection
subjects bio‐based material
Catalysts
Chemical synthesis
Curing agents
Degradation
Depletion
epoxy polymer
Epoxy resins
Esters
Fossil fuels
Glass transition temperature
high thermal stability
Materials science
Methylene dianiline
Monomers
polymer decomposition
Polymerization
Polymers
Rapid prototyping
Thermal stability
α‐hydroxyl esters
title Synthesis of isoeugenol biobased epoxy polymer by forming α‐hydroxyl ester and degradation studies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A52%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20isoeugenol%20biobased%20epoxy%20polymer%20by%20forming%20%CE%B1%E2%80%90hydroxyl%20ester%20and%20degradation%20studies&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Sivanesan,%20Dharmalingam&rft.date=2022-03-20&rft.volume=139&rft.issue=12&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.51830&rft_dat=%3Cproquest_cross%3E2615606193%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2970-c4c9eb4379894292f7b60acb983b6fba6543a54e5cb14f2d1548de17ece378403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2615606193&rft_id=info:pmid/&rfr_iscdi=true