Loading…

Optimization of the Internal Circulating Fluidized Bed Using Computational Fluid Dynamics Technology

The computational fluid dynamics (CFD) technology is analyzed and calculated utilizing the turbulence model and multiphase flow model to explore the performance of internal circulating fluidized beds (ICFB) based on CFD. The three-dimensional simulation method can study the hydrodynamic properties o...

Full description

Saved in:
Bibliographic Details
Published in:Fluid dynamics & materials processing 2022, Vol.18 (2), p.303-312
Main Authors: Du, Xiangxi, Liu, Muyun, Sun, Yanhua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The computational fluid dynamics (CFD) technology is analyzed and calculated utilizing the turbulence model and multiphase flow model to explore the performance of internal circulating fluidized beds (ICFB) based on CFD. The three-dimensional simulation method can study the hydrodynamic properties of the ICFB, and the performance of the fluidized bed is optimized. The fluidization performance of the ICFB is improved through the experimental study of the cross-shaped baffle. Then, through the cross-shaped baffle and funnel-shaped baffle placement, the fluidized bed reaches a coupled optimization. The results show that CFD simulation technology can effectively improve the mass transfer efficiency and performance of sewage treatment. The base gap cross-shaped baffle can improve the hydraulic conditions of the fluidized bed and reduce the system energy consumption. The cross-shaped baffle and funnel-shaped baffle can perfect the performance of the reactor and effectively strengthen the treatment in the intense aerobic process of industrial sewage.
ISSN:1555-2578
1555-256X
1555-2578
DOI:10.32604/fdmp.2022.016242