Loading…
Comparison of current state of control valve stiction detection and quantification techniques
The process control and automation system is one of the significant features in any process plant. The control valve is considered a fundamental part of the process control system. It regulates the fluid flow by changing the size of the flow passage as directed by the controller. If properly maintai...
Saved in:
Published in: | Transactions of the Institute of Measurement and Control 2022-02, Vol.44 (3), p.562-579 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c312t-e6e33bbb427ecdf603b1960107ef1e490584f2a17c78bc7e86b68f0eb5e4b26c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c312t-e6e33bbb427ecdf603b1960107ef1e490584f2a17c78bc7e86b68f0eb5e4b26c3 |
container_end_page | 579 |
container_issue | 3 |
container_start_page | 562 |
container_title | Transactions of the Institute of Measurement and Control |
container_volume | 44 |
creator | Akavalappil, Vijoy Radhakrishnan, T. K. |
description | The process control and automation system is one of the significant features in any process plant. The control valve is considered a fundamental part of the process control system. It regulates the fluid flow by changing the size of the flow passage as directed by the controller. If properly maintained, the control valves can help to reduce process variability and improve product quality, which in turn increases the overall efficiency of the plant. But control valve stiction is an enduring concern within process industries which eventually affects the efficiency of plant operation. Hence, it is extremely essential to detect and quantify stiction at the earliest opportunity, to determine the correct maintenance measures. Numerous methods related to stiction detection and estimation have been carried out so far by researchers. A literature study of the latest publications in stiction detection and quantification discloses that research in the conventional methods of stiction detection and quantification such as limit cycle pattern-based, waveform shape-based, nonlinearity-based, and model-based methods is gradually declining. At the same time, most stiction detection/quantification methods reported in the recent literature are based on artificial neural network and convolutional neural network. This implies that future stiction detection and quantification research will be focused towards machine learning (ML) algorithms. Taking this into consideration, this paper aims to provide a literature review of stiction detection and quantification methods by focusing on the latest research ideas and innovative approaches. This review also aims to compare recent techniques based on ML algorithms with conventional methods by pointing out the relationship among different methods, differences, and possible points of weakness.
Graphical Abstract |
doi_str_mv | 10.1177/01423312211038288 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2615717275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_01423312211038288</sage_id><sourcerecordid>2615717275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-e6e33bbb427ecdf603b1960107ef1e490584f2a17c78bc7e86b68f0eb5e4b26c3</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf4Abwuet2aSbLI9SvELCl70KEuSTjSl3bRJtuC_d7creBBPM7yPecMj5BroDECpWwqCcQ6MAVBes7o-IRMQSpWUy_kpmQx8OQjOyUVKa0qpEFJMyPsibHc6-hTaIrjCdjFim4uUdcYjENocw6Y46M0Be9jb7HvpCjOOm25Xxb7TbfbOW32Eeuqz9fsO0yU5c3qT8OpnTsnbw_3r4qlcvjw-L-6Wpe0_yiVK5NwYI5hCu3KScgNzSYEqdIBiTqtaOKZBWVUbq7CWRtaOoqlQGCYtn5Kb8e4uhiE3N-vQxbaPbJiESoFiqupVMKpsDClFdM0u-q2OXw3QZmix-dNi75mNnqQ_8Pfq_4Zvy7hzFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615717275</pqid></control><display><type>article</type><title>Comparison of current state of control valve stiction detection and quantification techniques</title><source>SAGE</source><creator>Akavalappil, Vijoy ; Radhakrishnan, T. K.</creator><creatorcontrib>Akavalappil, Vijoy ; Radhakrishnan, T. K.</creatorcontrib><description>The process control and automation system is one of the significant features in any process plant. The control valve is considered a fundamental part of the process control system. It regulates the fluid flow by changing the size of the flow passage as directed by the controller. If properly maintained, the control valves can help to reduce process variability and improve product quality, which in turn increases the overall efficiency of the plant. But control valve stiction is an enduring concern within process industries which eventually affects the efficiency of plant operation. Hence, it is extremely essential to detect and quantify stiction at the earliest opportunity, to determine the correct maintenance measures. Numerous methods related to stiction detection and estimation have been carried out so far by researchers. A literature study of the latest publications in stiction detection and quantification discloses that research in the conventional methods of stiction detection and quantification such as limit cycle pattern-based, waveform shape-based, nonlinearity-based, and model-based methods is gradually declining. At the same time, most stiction detection/quantification methods reported in the recent literature are based on artificial neural network and convolutional neural network. This implies that future stiction detection and quantification research will be focused towards machine learning (ML) algorithms. Taking this into consideration, this paper aims to provide a literature review of stiction detection and quantification methods by focusing on the latest research ideas and innovative approaches. This review also aims to compare recent techniques based on ML algorithms with conventional methods by pointing out the relationship among different methods, differences, and possible points of weakness.
Graphical Abstract</description><identifier>ISSN: 0142-3312</identifier><identifier>EISSN: 1477-0369</identifier><identifier>DOI: 10.1177/01423312211038288</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Artificial neural networks ; Control systems ; Control valves ; Fluid dynamics ; Fluid flow ; Literature reviews ; Machine learning ; Neural networks ; Process controls ; Stiction ; Waveforms</subject><ispartof>Transactions of the Institute of Measurement and Control, 2022-02, Vol.44 (3), p.562-579</ispartof><rights>The Author(s) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-e6e33bbb427ecdf603b1960107ef1e490584f2a17c78bc7e86b68f0eb5e4b26c3</citedby><cites>FETCH-LOGICAL-c312t-e6e33bbb427ecdf603b1960107ef1e490584f2a17c78bc7e86b68f0eb5e4b26c3</cites><orcidid>0000-0002-6477-1440 ; 0000-0002-7208-5993</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>313,314,780,784,792,27922,27924,27925,79364</link.rule.ids></links><search><creatorcontrib>Akavalappil, Vijoy</creatorcontrib><creatorcontrib>Radhakrishnan, T. K.</creatorcontrib><title>Comparison of current state of control valve stiction detection and quantification techniques</title><title>Transactions of the Institute of Measurement and Control</title><description>The process control and automation system is one of the significant features in any process plant. The control valve is considered a fundamental part of the process control system. It regulates the fluid flow by changing the size of the flow passage as directed by the controller. If properly maintained, the control valves can help to reduce process variability and improve product quality, which in turn increases the overall efficiency of the plant. But control valve stiction is an enduring concern within process industries which eventually affects the efficiency of plant operation. Hence, it is extremely essential to detect and quantify stiction at the earliest opportunity, to determine the correct maintenance measures. Numerous methods related to stiction detection and estimation have been carried out so far by researchers. A literature study of the latest publications in stiction detection and quantification discloses that research in the conventional methods of stiction detection and quantification such as limit cycle pattern-based, waveform shape-based, nonlinearity-based, and model-based methods is gradually declining. At the same time, most stiction detection/quantification methods reported in the recent literature are based on artificial neural network and convolutional neural network. This implies that future stiction detection and quantification research will be focused towards machine learning (ML) algorithms. Taking this into consideration, this paper aims to provide a literature review of stiction detection and quantification methods by focusing on the latest research ideas and innovative approaches. This review also aims to compare recent techniques based on ML algorithms with conventional methods by pointing out the relationship among different methods, differences, and possible points of weakness.
Graphical Abstract</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Control systems</subject><subject>Control valves</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Process controls</subject><subject>Stiction</subject><subject>Waveforms</subject><issn>0142-3312</issn><issn>1477-0369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrf4Abwuet2aSbLI9SvELCl70KEuSTjSl3bRJtuC_d7creBBPM7yPecMj5BroDECpWwqCcQ6MAVBes7o-IRMQSpWUy_kpmQx8OQjOyUVKa0qpEFJMyPsibHc6-hTaIrjCdjFim4uUdcYjENocw6Y46M0Be9jb7HvpCjOOm25Xxb7TbfbOW32Eeuqz9fsO0yU5c3qT8OpnTsnbw_3r4qlcvjw-L-6Wpe0_yiVK5NwYI5hCu3KScgNzSYEqdIBiTqtaOKZBWVUbq7CWRtaOoqlQGCYtn5Kb8e4uhiE3N-vQxbaPbJiESoFiqupVMKpsDClFdM0u-q2OXw3QZmix-dNi75mNnqQ_8Pfq_4Zvy7hzFQ</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Akavalappil, Vijoy</creator><creator>Radhakrishnan, T. K.</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6477-1440</orcidid><orcidid>https://orcid.org/0000-0002-7208-5993</orcidid></search><sort><creationdate>202202</creationdate><title>Comparison of current state of control valve stiction detection and quantification techniques</title><author>Akavalappil, Vijoy ; Radhakrishnan, T. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-e6e33bbb427ecdf603b1960107ef1e490584f2a17c78bc7e86b68f0eb5e4b26c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Control systems</topic><topic>Control valves</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Process controls</topic><topic>Stiction</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akavalappil, Vijoy</creatorcontrib><creatorcontrib>Radhakrishnan, T. K.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Transactions of the Institute of Measurement and Control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akavalappil, Vijoy</au><au>Radhakrishnan, T. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of current state of control valve stiction detection and quantification techniques</atitle><jtitle>Transactions of the Institute of Measurement and Control</jtitle><date>2022-02</date><risdate>2022</risdate><volume>44</volume><issue>3</issue><spage>562</spage><epage>579</epage><pages>562-579</pages><issn>0142-3312</issn><eissn>1477-0369</eissn><abstract>The process control and automation system is one of the significant features in any process plant. The control valve is considered a fundamental part of the process control system. It regulates the fluid flow by changing the size of the flow passage as directed by the controller. If properly maintained, the control valves can help to reduce process variability and improve product quality, which in turn increases the overall efficiency of the plant. But control valve stiction is an enduring concern within process industries which eventually affects the efficiency of plant operation. Hence, it is extremely essential to detect and quantify stiction at the earliest opportunity, to determine the correct maintenance measures. Numerous methods related to stiction detection and estimation have been carried out so far by researchers. A literature study of the latest publications in stiction detection and quantification discloses that research in the conventional methods of stiction detection and quantification such as limit cycle pattern-based, waveform shape-based, nonlinearity-based, and model-based methods is gradually declining. At the same time, most stiction detection/quantification methods reported in the recent literature are based on artificial neural network and convolutional neural network. This implies that future stiction detection and quantification research will be focused towards machine learning (ML) algorithms. Taking this into consideration, this paper aims to provide a literature review of stiction detection and quantification methods by focusing on the latest research ideas and innovative approaches. This review also aims to compare recent techniques based on ML algorithms with conventional methods by pointing out the relationship among different methods, differences, and possible points of weakness.
Graphical Abstract</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/01423312211038288</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-6477-1440</orcidid><orcidid>https://orcid.org/0000-0002-7208-5993</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-3312 |
ispartof | Transactions of the Institute of Measurement and Control, 2022-02, Vol.44 (3), p.562-579 |
issn | 0142-3312 1477-0369 |
language | eng |
recordid | cdi_proquest_journals_2615717275 |
source | SAGE |
subjects | Algorithms Artificial neural networks Control systems Control valves Fluid dynamics Fluid flow Literature reviews Machine learning Neural networks Process controls Stiction Waveforms |
title | Comparison of current state of control valve stiction detection and quantification techniques |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A32%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20current%20state%20of%20control%20valve%20stiction%20detection%20and%20quantification%20techniques&rft.jtitle=Transactions%20of%20the%20Institute%20of%20Measurement%20and%20Control&rft.au=Akavalappil,%20Vijoy&rft.date=2022-02&rft.volume=44&rft.issue=3&rft.spage=562&rft.epage=579&rft.pages=562-579&rft.issn=0142-3312&rft.eissn=1477-0369&rft_id=info:doi/10.1177/01423312211038288&rft_dat=%3Cproquest_cross%3E2615717275%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c312t-e6e33bbb427ecdf603b1960107ef1e490584f2a17c78bc7e86b68f0eb5e4b26c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2615717275&rft_id=info:pmid/&rft_sage_id=10.1177_01423312211038288&rfr_iscdi=true |