Loading…
Influence of cooling rate on ω phase precipitation and deformation mechanism of a novel metastable β titanium alloy
This work investigated the effect of cooling rate (water quenching and air cooling) on the precipitation of ω phase after solution treatment in β-phase region, and its effect on the mechanical properties in a novel metastable β titanium alloy (Ti–5Mo–3Cr–Fe–3Zr). The initial microstructures, phase c...
Saved in:
Published in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2022-01, Vol.829, p.142151, Article 142151 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c328t-9adc1cb5f17c4cabc990028ac71a5d35468272199a680191ccccaa875b5386c73 |
---|---|
cites | cdi_FETCH-LOGICAL-c328t-9adc1cb5f17c4cabc990028ac71a5d35468272199a680191ccccaa875b5386c73 |
container_end_page | |
container_issue | |
container_start_page | 142151 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 829 |
creator | Wang, Kaige Wu, Di Wang, Dong Deng, Zixuan Tian, Yueyan Zhang, Ligang Liu, Libin |
description | This work investigated the effect of cooling rate (water quenching and air cooling) on the precipitation of ω phase after solution treatment in β-phase region, and its effect on the mechanical properties in a novel metastable β titanium alloy (Ti–5Mo–3Cr–Fe–3Zr). The initial microstructures, phase composition and deformation-induced microstructures have been investigated using SEM, EBSD, XRD, and TEM. The phase composition of water-quenched alloy and air-cooled alloy are β, α", and ω phase. The size and volume fraction of ω phase of air-cooled alloy are larger than that of water-quenched alloy, resulting in an increase in tensile strength and a decrease in ductility. Deformation mechanisms of Ti–5Mo–3Cr–Fe–3Zr alloy with different cooling rate change from stress-induced ω phase transformation and dislocation slip to only dislocation slip. The stress-induced ω lamellas parallel to [1-11]β direction along the [0001]ω1 direction, which is formed by {112}β β slip. Dislocations can cut through the encountered ω phase to form ω-free deformation bands, which accounts for the ductility.
•The size and volume fraction of ω phase of air-cooled alloy are larger than that of water-quenched alloy.•Deformation induced β to ω phase and ω to β phase transformation simultaneously appear in water-quenched alloy.•Dislocations can cut through the encountered ω phase to form ω-free deformation bands, which accounts for the ductility. |
doi_str_mv | 10.1016/j.msea.2021.142151 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2615886320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509321014155</els_id><sourcerecordid>2615886320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-9adc1cb5f17c4cabc990028ac71a5d35468272199a680191ccccaa875b5386c73</originalsourceid><addsrcrecordid>eNp9kEFq3TAQhkVpIa9pL9CVIGu_aGTLliCbENI2EMgmWYt5stzoYUuOJAdyhFynB2muVBlnndkM_zD_P8NHyA9ge2DQnh_3U7K454zDHhoOAj6RHciurhpVt5_JjikOlWCqPiFfUzoyxqBhYkeWGz-Mi_XG0jBQE8Lo_B8aMRft6dsrnR8xWTpHa9zsMmZXxuh72tshxGnTkzWP6F2a1gykPjzbsQwzpoyH0dJ_f2kuXu-WieI4hpdv5MuAY7Lf3_spefh5fX_1u7q9-3VzdXlbmZrLXCnsDZiDGKAzjcGDUYoxLtF0gKKvRdNK3nFQClvJQIEphSg7cRC1bE1Xn5KzLXeO4WmxKetjWKIvJzVvQUjZ1pyVLb5tmRhSinbQc3QTxhcNTK949VGvePWKV294i-liM9ny_7OzUSfjVo69K6yy7oP7yP4fbROFyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615886320</pqid></control><display><type>article</type><title>Influence of cooling rate on ω phase precipitation and deformation mechanism of a novel metastable β titanium alloy</title><source>ScienceDirect Freedom Collection</source><creator>Wang, Kaige ; Wu, Di ; Wang, Dong ; Deng, Zixuan ; Tian, Yueyan ; Zhang, Ligang ; Liu, Libin</creator><creatorcontrib>Wang, Kaige ; Wu, Di ; Wang, Dong ; Deng, Zixuan ; Tian, Yueyan ; Zhang, Ligang ; Liu, Libin</creatorcontrib><description>This work investigated the effect of cooling rate (water quenching and air cooling) on the precipitation of ω phase after solution treatment in β-phase region, and its effect on the mechanical properties in a novel metastable β titanium alloy (Ti–5Mo–3Cr–Fe–3Zr). The initial microstructures, phase composition and deformation-induced microstructures have been investigated using SEM, EBSD, XRD, and TEM. The phase composition of water-quenched alloy and air-cooled alloy are β, α", and ω phase. The size and volume fraction of ω phase of air-cooled alloy are larger than that of water-quenched alloy, resulting in an increase in tensile strength and a decrease in ductility. Deformation mechanisms of Ti–5Mo–3Cr–Fe–3Zr alloy with different cooling rate change from stress-induced ω phase transformation and dislocation slip to only dislocation slip. The stress-induced ω lamellas parallel to [1-11]β direction along the [0001]ω1 direction, which is formed by {112}β β slip. Dislocations can cut through the encountered ω phase to form ω-free deformation bands, which accounts for the ductility.
•The size and volume fraction of ω phase of air-cooled alloy are larger than that of water-quenched alloy.•Deformation induced β to ω phase and ω to β phase transformation simultaneously appear in water-quenched alloy.•Dislocations can cut through the encountered ω phase to form ω-free deformation bands, which accounts for the ductility.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2021.142151</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Air cooling ; Beta phase ; Chemical precipitation ; Cooling effects ; Cooling rate ; Deformation ; Deformation mechanism ; Deformation mechanisms ; Ductility ; Iron ; Mechanical properties ; Microstructure ; Phase composition ; Phase transitions ; Slip ; Solution heat treatment ; Tensile strength ; Titanium alloys ; Titanium base alloys ; Transmission electron microscopy ; Water quenching ; β titanium alloy ; ω phase</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2022-01, Vol.829, p.142151, Article 142151</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-9adc1cb5f17c4cabc990028ac71a5d35468272199a680191ccccaa875b5386c73</citedby><cites>FETCH-LOGICAL-c328t-9adc1cb5f17c4cabc990028ac71a5d35468272199a680191ccccaa875b5386c73</cites><orcidid>0000-0002-7851-1228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Wang, Kaige</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Deng, Zixuan</creatorcontrib><creatorcontrib>Tian, Yueyan</creatorcontrib><creatorcontrib>Zhang, Ligang</creatorcontrib><creatorcontrib>Liu, Libin</creatorcontrib><title>Influence of cooling rate on ω phase precipitation and deformation mechanism of a novel metastable β titanium alloy</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>This work investigated the effect of cooling rate (water quenching and air cooling) on the precipitation of ω phase after solution treatment in β-phase region, and its effect on the mechanical properties in a novel metastable β titanium alloy (Ti–5Mo–3Cr–Fe–3Zr). The initial microstructures, phase composition and deformation-induced microstructures have been investigated using SEM, EBSD, XRD, and TEM. The phase composition of water-quenched alloy and air-cooled alloy are β, α", and ω phase. The size and volume fraction of ω phase of air-cooled alloy are larger than that of water-quenched alloy, resulting in an increase in tensile strength and a decrease in ductility. Deformation mechanisms of Ti–5Mo–3Cr–Fe–3Zr alloy with different cooling rate change from stress-induced ω phase transformation and dislocation slip to only dislocation slip. The stress-induced ω lamellas parallel to [1-11]β direction along the [0001]ω1 direction, which is formed by {112}β β slip. Dislocations can cut through the encountered ω phase to form ω-free deformation bands, which accounts for the ductility.
•The size and volume fraction of ω phase of air-cooled alloy are larger than that of water-quenched alloy.•Deformation induced β to ω phase and ω to β phase transformation simultaneously appear in water-quenched alloy.•Dislocations can cut through the encountered ω phase to form ω-free deformation bands, which accounts for the ductility.</description><subject>Air cooling</subject><subject>Beta phase</subject><subject>Chemical precipitation</subject><subject>Cooling effects</subject><subject>Cooling rate</subject><subject>Deformation</subject><subject>Deformation mechanism</subject><subject>Deformation mechanisms</subject><subject>Ductility</subject><subject>Iron</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Phase composition</subject><subject>Phase transitions</subject><subject>Slip</subject><subject>Solution heat treatment</subject><subject>Tensile strength</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Transmission electron microscopy</subject><subject>Water quenching</subject><subject>β titanium alloy</subject><subject>ω phase</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEFq3TAQhkVpIa9pL9CVIGu_aGTLliCbENI2EMgmWYt5stzoYUuOJAdyhFynB2muVBlnndkM_zD_P8NHyA9ge2DQnh_3U7K454zDHhoOAj6RHciurhpVt5_JjikOlWCqPiFfUzoyxqBhYkeWGz-Mi_XG0jBQE8Lo_B8aMRft6dsrnR8xWTpHa9zsMmZXxuh72tshxGnTkzWP6F2a1gykPjzbsQwzpoyH0dJ_f2kuXu-WieI4hpdv5MuAY7Lf3_spefh5fX_1u7q9-3VzdXlbmZrLXCnsDZiDGKAzjcGDUYoxLtF0gKKvRdNK3nFQClvJQIEphSg7cRC1bE1Xn5KzLXeO4WmxKetjWKIvJzVvQUjZ1pyVLb5tmRhSinbQc3QTxhcNTK949VGvePWKV294i-liM9ny_7OzUSfjVo69K6yy7oP7yP4fbROFyA</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Wang, Kaige</creator><creator>Wu, Di</creator><creator>Wang, Dong</creator><creator>Deng, Zixuan</creator><creator>Tian, Yueyan</creator><creator>Zhang, Ligang</creator><creator>Liu, Libin</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7851-1228</orcidid></search><sort><creationdate>20220101</creationdate><title>Influence of cooling rate on ω phase precipitation and deformation mechanism of a novel metastable β titanium alloy</title><author>Wang, Kaige ; Wu, Di ; Wang, Dong ; Deng, Zixuan ; Tian, Yueyan ; Zhang, Ligang ; Liu, Libin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-9adc1cb5f17c4cabc990028ac71a5d35468272199a680191ccccaa875b5386c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air cooling</topic><topic>Beta phase</topic><topic>Chemical precipitation</topic><topic>Cooling effects</topic><topic>Cooling rate</topic><topic>Deformation</topic><topic>Deformation mechanism</topic><topic>Deformation mechanisms</topic><topic>Ductility</topic><topic>Iron</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Phase composition</topic><topic>Phase transitions</topic><topic>Slip</topic><topic>Solution heat treatment</topic><topic>Tensile strength</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Transmission electron microscopy</topic><topic>Water quenching</topic><topic>β titanium alloy</topic><topic>ω phase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kaige</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Deng, Zixuan</creatorcontrib><creatorcontrib>Tian, Yueyan</creatorcontrib><creatorcontrib>Zhang, Ligang</creatorcontrib><creatorcontrib>Liu, Libin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kaige</au><au>Wu, Di</au><au>Wang, Dong</au><au>Deng, Zixuan</au><au>Tian, Yueyan</au><au>Zhang, Ligang</au><au>Liu, Libin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of cooling rate on ω phase precipitation and deformation mechanism of a novel metastable β titanium alloy</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>829</volume><spage>142151</spage><pages>142151-</pages><artnum>142151</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>This work investigated the effect of cooling rate (water quenching and air cooling) on the precipitation of ω phase after solution treatment in β-phase region, and its effect on the mechanical properties in a novel metastable β titanium alloy (Ti–5Mo–3Cr–Fe–3Zr). The initial microstructures, phase composition and deformation-induced microstructures have been investigated using SEM, EBSD, XRD, and TEM. The phase composition of water-quenched alloy and air-cooled alloy are β, α", and ω phase. The size and volume fraction of ω phase of air-cooled alloy are larger than that of water-quenched alloy, resulting in an increase in tensile strength and a decrease in ductility. Deformation mechanisms of Ti–5Mo–3Cr–Fe–3Zr alloy with different cooling rate change from stress-induced ω phase transformation and dislocation slip to only dislocation slip. The stress-induced ω lamellas parallel to [1-11]β direction along the [0001]ω1 direction, which is formed by {112}β β slip. Dislocations can cut through the encountered ω phase to form ω-free deformation bands, which accounts for the ductility.
•The size and volume fraction of ω phase of air-cooled alloy are larger than that of water-quenched alloy.•Deformation induced β to ω phase and ω to β phase transformation simultaneously appear in water-quenched alloy.•Dislocations can cut through the encountered ω phase to form ω-free deformation bands, which accounts for the ductility.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2021.142151</doi><orcidid>https://orcid.org/0000-0002-7851-1228</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2022-01, Vol.829, p.142151, Article 142151 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_journals_2615886320 |
source | ScienceDirect Freedom Collection |
subjects | Air cooling Beta phase Chemical precipitation Cooling effects Cooling rate Deformation Deformation mechanism Deformation mechanisms Ductility Iron Mechanical properties Microstructure Phase composition Phase transitions Slip Solution heat treatment Tensile strength Titanium alloys Titanium base alloys Transmission electron microscopy Water quenching β titanium alloy ω phase |
title | Influence of cooling rate on ω phase precipitation and deformation mechanism of a novel metastable β titanium alloy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A49%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20cooling%20rate%20on%20%CF%89%20phase%20precipitation%20and%20deformation%20mechanism%20of%20a%20novel%20metastable%20%CE%B2%20titanium%20alloy&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Wang,%20Kaige&rft.date=2022-01-01&rft.volume=829&rft.spage=142151&rft.pages=142151-&rft.artnum=142151&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2021.142151&rft_dat=%3Cproquest_cross%3E2615886320%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-9adc1cb5f17c4cabc990028ac71a5d35468272199a680191ccccaa875b5386c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2615886320&rft_id=info:pmid/&rfr_iscdi=true |