Loading…

Influence of cooling rate on ω phase precipitation and deformation mechanism of a novel metastable β titanium alloy

This work investigated the effect of cooling rate (water quenching and air cooling) on the precipitation of ω phase after solution treatment in β-phase region, and its effect on the mechanical properties in a novel metastable β titanium alloy (Ti–5Mo–3Cr–Fe–3Zr). The initial microstructures, phase c...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2022-01, Vol.829, p.142151, Article 142151
Main Authors: Wang, Kaige, Wu, Di, Wang, Dong, Deng, Zixuan, Tian, Yueyan, Zhang, Ligang, Liu, Libin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c328t-9adc1cb5f17c4cabc990028ac71a5d35468272199a680191ccccaa875b5386c73
cites cdi_FETCH-LOGICAL-c328t-9adc1cb5f17c4cabc990028ac71a5d35468272199a680191ccccaa875b5386c73
container_end_page
container_issue
container_start_page 142151
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 829
creator Wang, Kaige
Wu, Di
Wang, Dong
Deng, Zixuan
Tian, Yueyan
Zhang, Ligang
Liu, Libin
description This work investigated the effect of cooling rate (water quenching and air cooling) on the precipitation of ω phase after solution treatment in β-phase region, and its effect on the mechanical properties in a novel metastable β titanium alloy (Ti–5Mo–3Cr–Fe–3Zr). The initial microstructures, phase composition and deformation-induced microstructures have been investigated using SEM, EBSD, XRD, and TEM. The phase composition of water-quenched alloy and air-cooled alloy are β, α", and ω phase. The size and volume fraction of ω phase of air-cooled alloy are larger than that of water-quenched alloy, resulting in an increase in tensile strength and a decrease in ductility. Deformation mechanisms of Ti–5Mo–3Cr–Fe–3Zr alloy with different cooling rate change from stress-induced ω phase transformation and dislocation slip to only dislocation slip. The stress-induced ω lamellas parallel to [1-11]β direction along the [0001]ω1 direction, which is formed by {112}β β slip. Dislocations can cut through the encountered ω phase to form ω-free deformation bands, which accounts for the ductility. •The size and volume fraction of ω phase of air-cooled alloy are larger than that of water-quenched alloy.•Deformation induced β to ω phase and ω to β phase transformation simultaneously appear in water-quenched alloy.•Dislocations can cut through the encountered ω phase to form ω-free deformation bands, which accounts for the ductility.
doi_str_mv 10.1016/j.msea.2021.142151
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2615886320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509321014155</els_id><sourcerecordid>2615886320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-9adc1cb5f17c4cabc990028ac71a5d35468272199a680191ccccaa875b5386c73</originalsourceid><addsrcrecordid>eNp9kEFq3TAQhkVpIa9pL9CVIGu_aGTLliCbENI2EMgmWYt5stzoYUuOJAdyhFynB2muVBlnndkM_zD_P8NHyA9ge2DQnh_3U7K454zDHhoOAj6RHciurhpVt5_JjikOlWCqPiFfUzoyxqBhYkeWGz-Mi_XG0jBQE8Lo_B8aMRft6dsrnR8xWTpHa9zsMmZXxuh72tshxGnTkzWP6F2a1gykPjzbsQwzpoyH0dJ_f2kuXu-WieI4hpdv5MuAY7Lf3_spefh5fX_1u7q9-3VzdXlbmZrLXCnsDZiDGKAzjcGDUYoxLtF0gKKvRdNK3nFQClvJQIEphSg7cRC1bE1Xn5KzLXeO4WmxKetjWKIvJzVvQUjZ1pyVLb5tmRhSinbQc3QTxhcNTK949VGvePWKV294i-liM9ny_7OzUSfjVo69K6yy7oP7yP4fbROFyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2615886320</pqid></control><display><type>article</type><title>Influence of cooling rate on ω phase precipitation and deformation mechanism of a novel metastable β titanium alloy</title><source>ScienceDirect Freedom Collection</source><creator>Wang, Kaige ; Wu, Di ; Wang, Dong ; Deng, Zixuan ; Tian, Yueyan ; Zhang, Ligang ; Liu, Libin</creator><creatorcontrib>Wang, Kaige ; Wu, Di ; Wang, Dong ; Deng, Zixuan ; Tian, Yueyan ; Zhang, Ligang ; Liu, Libin</creatorcontrib><description>This work investigated the effect of cooling rate (water quenching and air cooling) on the precipitation of ω phase after solution treatment in β-phase region, and its effect on the mechanical properties in a novel metastable β titanium alloy (Ti–5Mo–3Cr–Fe–3Zr). The initial microstructures, phase composition and deformation-induced microstructures have been investigated using SEM, EBSD, XRD, and TEM. The phase composition of water-quenched alloy and air-cooled alloy are β, α", and ω phase. The size and volume fraction of ω phase of air-cooled alloy are larger than that of water-quenched alloy, resulting in an increase in tensile strength and a decrease in ductility. Deformation mechanisms of Ti–5Mo–3Cr–Fe–3Zr alloy with different cooling rate change from stress-induced ω phase transformation and dislocation slip to only dislocation slip. The stress-induced ω lamellas parallel to [1-11]β direction along the [0001]ω1 direction, which is formed by {112}β β slip. Dislocations can cut through the encountered ω phase to form ω-free deformation bands, which accounts for the ductility. •The size and volume fraction of ω phase of air-cooled alloy are larger than that of water-quenched alloy.•Deformation induced β to ω phase and ω to β phase transformation simultaneously appear in water-quenched alloy.•Dislocations can cut through the encountered ω phase to form ω-free deformation bands, which accounts for the ductility.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2021.142151</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Air cooling ; Beta phase ; Chemical precipitation ; Cooling effects ; Cooling rate ; Deformation ; Deformation mechanism ; Deformation mechanisms ; Ductility ; Iron ; Mechanical properties ; Microstructure ; Phase composition ; Phase transitions ; Slip ; Solution heat treatment ; Tensile strength ; Titanium alloys ; Titanium base alloys ; Transmission electron microscopy ; Water quenching ; β titanium alloy ; ω phase</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2022-01, Vol.829, p.142151, Article 142151</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 1, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-9adc1cb5f17c4cabc990028ac71a5d35468272199a680191ccccaa875b5386c73</citedby><cites>FETCH-LOGICAL-c328t-9adc1cb5f17c4cabc990028ac71a5d35468272199a680191ccccaa875b5386c73</cites><orcidid>0000-0002-7851-1228</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Wang, Kaige</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Deng, Zixuan</creatorcontrib><creatorcontrib>Tian, Yueyan</creatorcontrib><creatorcontrib>Zhang, Ligang</creatorcontrib><creatorcontrib>Liu, Libin</creatorcontrib><title>Influence of cooling rate on ω phase precipitation and deformation mechanism of a novel metastable β titanium alloy</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>This work investigated the effect of cooling rate (water quenching and air cooling) on the precipitation of ω phase after solution treatment in β-phase region, and its effect on the mechanical properties in a novel metastable β titanium alloy (Ti–5Mo–3Cr–Fe–3Zr). The initial microstructures, phase composition and deformation-induced microstructures have been investigated using SEM, EBSD, XRD, and TEM. The phase composition of water-quenched alloy and air-cooled alloy are β, α", and ω phase. The size and volume fraction of ω phase of air-cooled alloy are larger than that of water-quenched alloy, resulting in an increase in tensile strength and a decrease in ductility. Deformation mechanisms of Ti–5Mo–3Cr–Fe–3Zr alloy with different cooling rate change from stress-induced ω phase transformation and dislocation slip to only dislocation slip. The stress-induced ω lamellas parallel to [1-11]β direction along the [0001]ω1 direction, which is formed by {112}β β slip. Dislocations can cut through the encountered ω phase to form ω-free deformation bands, which accounts for the ductility. •The size and volume fraction of ω phase of air-cooled alloy are larger than that of water-quenched alloy.•Deformation induced β to ω phase and ω to β phase transformation simultaneously appear in water-quenched alloy.•Dislocations can cut through the encountered ω phase to form ω-free deformation bands, which accounts for the ductility.</description><subject>Air cooling</subject><subject>Beta phase</subject><subject>Chemical precipitation</subject><subject>Cooling effects</subject><subject>Cooling rate</subject><subject>Deformation</subject><subject>Deformation mechanism</subject><subject>Deformation mechanisms</subject><subject>Ductility</subject><subject>Iron</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Phase composition</subject><subject>Phase transitions</subject><subject>Slip</subject><subject>Solution heat treatment</subject><subject>Tensile strength</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Transmission electron microscopy</subject><subject>Water quenching</subject><subject>β titanium alloy</subject><subject>ω phase</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEFq3TAQhkVpIa9pL9CVIGu_aGTLliCbENI2EMgmWYt5stzoYUuOJAdyhFynB2muVBlnndkM_zD_P8NHyA9ge2DQnh_3U7K454zDHhoOAj6RHciurhpVt5_JjikOlWCqPiFfUzoyxqBhYkeWGz-Mi_XG0jBQE8Lo_B8aMRft6dsrnR8xWTpHa9zsMmZXxuh72tshxGnTkzWP6F2a1gykPjzbsQwzpoyH0dJ_f2kuXu-WieI4hpdv5MuAY7Lf3_spefh5fX_1u7q9-3VzdXlbmZrLXCnsDZiDGKAzjcGDUYoxLtF0gKKvRdNK3nFQClvJQIEphSg7cRC1bE1Xn5KzLXeO4WmxKetjWKIvJzVvQUjZ1pyVLb5tmRhSinbQc3QTxhcNTK949VGvePWKV294i-liM9ny_7OzUSfjVo69K6yy7oP7yP4fbROFyA</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Wang, Kaige</creator><creator>Wu, Di</creator><creator>Wang, Dong</creator><creator>Deng, Zixuan</creator><creator>Tian, Yueyan</creator><creator>Zhang, Ligang</creator><creator>Liu, Libin</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7851-1228</orcidid></search><sort><creationdate>20220101</creationdate><title>Influence of cooling rate on ω phase precipitation and deformation mechanism of a novel metastable β titanium alloy</title><author>Wang, Kaige ; Wu, Di ; Wang, Dong ; Deng, Zixuan ; Tian, Yueyan ; Zhang, Ligang ; Liu, Libin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-9adc1cb5f17c4cabc990028ac71a5d35468272199a680191ccccaa875b5386c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air cooling</topic><topic>Beta phase</topic><topic>Chemical precipitation</topic><topic>Cooling effects</topic><topic>Cooling rate</topic><topic>Deformation</topic><topic>Deformation mechanism</topic><topic>Deformation mechanisms</topic><topic>Ductility</topic><topic>Iron</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Phase composition</topic><topic>Phase transitions</topic><topic>Slip</topic><topic>Solution heat treatment</topic><topic>Tensile strength</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Transmission electron microscopy</topic><topic>Water quenching</topic><topic>β titanium alloy</topic><topic>ω phase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kaige</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Wang, Dong</creatorcontrib><creatorcontrib>Deng, Zixuan</creatorcontrib><creatorcontrib>Tian, Yueyan</creatorcontrib><creatorcontrib>Zhang, Ligang</creatorcontrib><creatorcontrib>Liu, Libin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kaige</au><au>Wu, Di</au><au>Wang, Dong</au><au>Deng, Zixuan</au><au>Tian, Yueyan</au><au>Zhang, Ligang</au><au>Liu, Libin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of cooling rate on ω phase precipitation and deformation mechanism of a novel metastable β titanium alloy</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>829</volume><spage>142151</spage><pages>142151-</pages><artnum>142151</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>This work investigated the effect of cooling rate (water quenching and air cooling) on the precipitation of ω phase after solution treatment in β-phase region, and its effect on the mechanical properties in a novel metastable β titanium alloy (Ti–5Mo–3Cr–Fe–3Zr). The initial microstructures, phase composition and deformation-induced microstructures have been investigated using SEM, EBSD, XRD, and TEM. The phase composition of water-quenched alloy and air-cooled alloy are β, α", and ω phase. The size and volume fraction of ω phase of air-cooled alloy are larger than that of water-quenched alloy, resulting in an increase in tensile strength and a decrease in ductility. Deformation mechanisms of Ti–5Mo–3Cr–Fe–3Zr alloy with different cooling rate change from stress-induced ω phase transformation and dislocation slip to only dislocation slip. The stress-induced ω lamellas parallel to [1-11]β direction along the [0001]ω1 direction, which is formed by {112}β β slip. Dislocations can cut through the encountered ω phase to form ω-free deformation bands, which accounts for the ductility. •The size and volume fraction of ω phase of air-cooled alloy are larger than that of water-quenched alloy.•Deformation induced β to ω phase and ω to β phase transformation simultaneously appear in water-quenched alloy.•Dislocations can cut through the encountered ω phase to form ω-free deformation bands, which accounts for the ductility.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2021.142151</doi><orcidid>https://orcid.org/0000-0002-7851-1228</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2022-01, Vol.829, p.142151, Article 142151
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2615886320
source ScienceDirect Freedom Collection
subjects Air cooling
Beta phase
Chemical precipitation
Cooling effects
Cooling rate
Deformation
Deformation mechanism
Deformation mechanisms
Ductility
Iron
Mechanical properties
Microstructure
Phase composition
Phase transitions
Slip
Solution heat treatment
Tensile strength
Titanium alloys
Titanium base alloys
Transmission electron microscopy
Water quenching
β titanium alloy
ω phase
title Influence of cooling rate on ω phase precipitation and deformation mechanism of a novel metastable β titanium alloy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A49%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20cooling%20rate%20on%20%CF%89%20phase%20precipitation%20and%20deformation%20mechanism%20of%20a%20novel%20metastable%20%CE%B2%20titanium%20alloy&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Wang,%20Kaige&rft.date=2022-01-01&rft.volume=829&rft.spage=142151&rft.pages=142151-&rft.artnum=142151&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2021.142151&rft_dat=%3Cproquest_cross%3E2615886320%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-9adc1cb5f17c4cabc990028ac71a5d35468272199a680191ccccaa875b5386c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2615886320&rft_id=info:pmid/&rfr_iscdi=true