Loading…

Complexity in the interdefinability of timelike, lightlike and spacelike relatedness of Minkowski spacetime

Interdefinability of timelike, lightlike and spacelike relatedness of Minkowski spacetime is investigated in detail in the paper, with the aim of finding the simplest definitions. Based on ideas scattered in the literature, definitions are given between any two of these relations that use only 4 var...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-12
Main Authors: Hajnal Andréka, Madarász, Judit X, Németi, István, Székely, Gergely
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Hajnal Andréka
Madarász, Judit X
Németi, István
Székely, Gergely
description Interdefinability of timelike, lightlike and spacelike relatedness of Minkowski spacetime is investigated in detail in the paper, with the aim of finding the simplest definitions. Based on ideas scattered in the literature, definitions are given between any two of these relations that use only 4 variables. All these definitions work over arbitrary Euclidean fields in place of the field of reals, if the dimension n of spacetime is greater than two. If n=2, the definitions work over arbitrary ordered fields except the ones based on lightlike relatedness (where no definition can work by symmetry). None of these relations can be defined from another one using only 3 variables. Our four-variable definitions use only one universal and one existential quantifiers in a specific order. In some of the cases, we show that the order of these quantifiers can be reversed for the price of using twice as many quantifiers. Except two cases, we provide existential/universal definitions using 5 variables or show that no existential/universal definition exists. There are no existential/universal definitions between any two of these relations using only 4 variables. It remains open whether there is an existential (universal) definition of timelike (lightlike) relatedness from spacelike relatedness if \(n>2\). Finally, several other open problems related to the quantifier complexity of the simplest possible definitions are given.
doi_str_mv 10.48550/arxiv.2112.15152
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2616145410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2616145410</sourcerecordid><originalsourceid>FETCH-LOGICAL-a520-414b37f62057ab4cb1e288914f4b56cd764108d9fd2c58d88527c5c35a2bf5fa3</originalsourceid><addsrcrecordid>eNotjctOwzAURC0kJKrSD2BniS0J9rVv4i5RxUsqYtN95cQ2dZM6IXah_D0JZTUjnXkQcsNZLhUiu9fDyX_lwDnkHDnCBZmBEDxTEuCKLGLcM8agKAFRzEiz6g59a08-_VAfaNrZUZIdjHU-6Mq3E-gcTf5gW9_YO9r6j12aLNXB0Njr-g_QwbY6WRNsjFPhzYem-46NP0em_jW5dLqNdvGvc7J5etysXrL1-_Pr6mGdaQSWSS4rUboCGJa6knXFLSi15NLJCovalIXkTJmlM1CjMkohlDXWAjVUDp0Wc3J7nu2H7vNoY9ruu-MQxsctFLzgEscB8QsVmFs6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616145410</pqid></control><display><type>article</type><title>Complexity in the interdefinability of timelike, lightlike and spacelike relatedness of Minkowski spacetime</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Hajnal Andréka ; Madarász, Judit X ; Németi, István ; Székely, Gergely</creator><creatorcontrib>Hajnal Andréka ; Madarász, Judit X ; Németi, István ; Székely, Gergely</creatorcontrib><description>Interdefinability of timelike, lightlike and spacelike relatedness of Minkowski spacetime is investigated in detail in the paper, with the aim of finding the simplest definitions. Based on ideas scattered in the literature, definitions are given between any two of these relations that use only 4 variables. All these definitions work over arbitrary Euclidean fields in place of the field of reals, if the dimension n of spacetime is greater than two. If n=2, the definitions work over arbitrary ordered fields except the ones based on lightlike relatedness (where no definition can work by symmetry). None of these relations can be defined from another one using only 3 variables. Our four-variable definitions use only one universal and one existential quantifiers in a specific order. In some of the cases, we show that the order of these quantifiers can be reversed for the price of using twice as many quantifiers. Except two cases, we provide existential/universal definitions using 5 variables or show that no existential/universal definition exists. There are no existential/universal definitions between any two of these relations using only 4 variables. It remains open whether there is an existential (universal) definition of timelike (lightlike) relatedness from spacelike relatedness if \(n&gt;2\). Finally, several other open problems related to the quantifier complexity of the simplest possible definitions are given.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2112.15152</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Complexity ; Minkowski space ; Spacetime ; Variables</subject><ispartof>arXiv.org, 2021-12</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2616145410?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Hajnal Andréka</creatorcontrib><creatorcontrib>Madarász, Judit X</creatorcontrib><creatorcontrib>Németi, István</creatorcontrib><creatorcontrib>Székely, Gergely</creatorcontrib><title>Complexity in the interdefinability of timelike, lightlike and spacelike relatedness of Minkowski spacetime</title><title>arXiv.org</title><description>Interdefinability of timelike, lightlike and spacelike relatedness of Minkowski spacetime is investigated in detail in the paper, with the aim of finding the simplest definitions. Based on ideas scattered in the literature, definitions are given between any two of these relations that use only 4 variables. All these definitions work over arbitrary Euclidean fields in place of the field of reals, if the dimension n of spacetime is greater than two. If n=2, the definitions work over arbitrary ordered fields except the ones based on lightlike relatedness (where no definition can work by symmetry). None of these relations can be defined from another one using only 3 variables. Our four-variable definitions use only one universal and one existential quantifiers in a specific order. In some of the cases, we show that the order of these quantifiers can be reversed for the price of using twice as many quantifiers. Except two cases, we provide existential/universal definitions using 5 variables or show that no existential/universal definition exists. There are no existential/universal definitions between any two of these relations using only 4 variables. It remains open whether there is an existential (universal) definition of timelike (lightlike) relatedness from spacelike relatedness if \(n&gt;2\). Finally, several other open problems related to the quantifier complexity of the simplest possible definitions are given.</description><subject>Complexity</subject><subject>Minkowski space</subject><subject>Spacetime</subject><subject>Variables</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjctOwzAURC0kJKrSD2BniS0J9rVv4i5RxUsqYtN95cQ2dZM6IXah_D0JZTUjnXkQcsNZLhUiu9fDyX_lwDnkHDnCBZmBEDxTEuCKLGLcM8agKAFRzEiz6g59a08-_VAfaNrZUZIdjHU-6Mq3E-gcTf5gW9_YO9r6j12aLNXB0Njr-g_QwbY6WRNsjFPhzYem-46NP0em_jW5dLqNdvGvc7J5etysXrL1-_Pr6mGdaQSWSS4rUboCGJa6knXFLSi15NLJCovalIXkTJmlM1CjMkohlDXWAjVUDp0Wc3J7nu2H7vNoY9ruu-MQxsctFLzgEscB8QsVmFs6</recordid><startdate>20211230</startdate><enddate>20211230</enddate><creator>Hajnal Andréka</creator><creator>Madarász, Judit X</creator><creator>Németi, István</creator><creator>Székely, Gergely</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211230</creationdate><title>Complexity in the interdefinability of timelike, lightlike and spacelike relatedness of Minkowski spacetime</title><author>Hajnal Andréka ; Madarász, Judit X ; Németi, István ; Székely, Gergely</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a520-414b37f62057ab4cb1e288914f4b56cd764108d9fd2c58d88527c5c35a2bf5fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Complexity</topic><topic>Minkowski space</topic><topic>Spacetime</topic><topic>Variables</topic><toplevel>online_resources</toplevel><creatorcontrib>Hajnal Andréka</creatorcontrib><creatorcontrib>Madarász, Judit X</creatorcontrib><creatorcontrib>Németi, István</creatorcontrib><creatorcontrib>Székely, Gergely</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hajnal Andréka</au><au>Madarász, Judit X</au><au>Németi, István</au><au>Székely, Gergely</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complexity in the interdefinability of timelike, lightlike and spacelike relatedness of Minkowski spacetime</atitle><jtitle>arXiv.org</jtitle><date>2021-12-30</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Interdefinability of timelike, lightlike and spacelike relatedness of Minkowski spacetime is investigated in detail in the paper, with the aim of finding the simplest definitions. Based on ideas scattered in the literature, definitions are given between any two of these relations that use only 4 variables. All these definitions work over arbitrary Euclidean fields in place of the field of reals, if the dimension n of spacetime is greater than two. If n=2, the definitions work over arbitrary ordered fields except the ones based on lightlike relatedness (where no definition can work by symmetry). None of these relations can be defined from another one using only 3 variables. Our four-variable definitions use only one universal and one existential quantifiers in a specific order. In some of the cases, we show that the order of these quantifiers can be reversed for the price of using twice as many quantifiers. Except two cases, we provide existential/universal definitions using 5 variables or show that no existential/universal definition exists. There are no existential/universal definitions between any two of these relations using only 4 variables. It remains open whether there is an existential (universal) definition of timelike (lightlike) relatedness from spacelike relatedness if \(n&gt;2\). Finally, several other open problems related to the quantifier complexity of the simplest possible definitions are given.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2112.15152</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2616145410
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Complexity
Minkowski space
Spacetime
Variables
title Complexity in the interdefinability of timelike, lightlike and spacelike relatedness of Minkowski spacetime
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A43%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complexity%20in%20the%20interdefinability%20of%20timelike,%20lightlike%20and%20spacelike%20relatedness%20of%20Minkowski%20spacetime&rft.jtitle=arXiv.org&rft.au=Hajnal%20Andr%C3%A9ka&rft.date=2021-12-30&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2112.15152&rft_dat=%3Cproquest%3E2616145410%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a520-414b37f62057ab4cb1e288914f4b56cd764108d9fd2c58d88527c5c35a2bf5fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2616145410&rft_id=info:pmid/&rfr_iscdi=true