Loading…

Magnetohydrodinamic dusty hybrid nanofluid peristaltic flow in curved channels

This paper presents numerical simulations for a MHD convective process in curved channels. The worked suspension consists of water as a based hybrid nanofluid and two types of the nanoparticles, namely, Cu and Al2O3. Two systems of the governing equations are formulated for the hybrid nanofluid and...

Full description

Saved in:
Bibliographic Details
Published in:Thermal science 2021, Vol.25 (6 Part A), p.4241-4255
Main Authors: Ahmed, Sameh, Rashed, Zenab
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c307t-8419f029b3916a81238556b3beec5de2a5c3ff9a356497470879294e7979b5fa3
cites
container_end_page 4255
container_issue 6 Part A
container_start_page 4241
container_title Thermal science
container_volume 25
creator Ahmed, Sameh
Rashed, Zenab
description This paper presents numerical simulations for a MHD convective process in curved channels. The worked suspension consists of water as a based hybrid nanofluid and two types of the nanoparticles, namely, Cu and Al2O3. Two systems of the governing equations are formulated for the hybrid nanofluid and dusty phases. The hybrid nanofluid system is modeled in view of lubrication approach. The governing equations are mapped to a regular computational domain then they solved numerically using the fourth order Runge-Kutta method. The obtained findings revealed that the growing in the Hartmann number causes a reduction in both of the hybrid nanofluid and dusty velocities while the mixture temperature is enhanced. Also, the temperature distributions are supported when either the Grashof number or the amplitude ratio is altered.
doi_str_mv 10.2298/TSCI191014144A
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2616262188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2616262188</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-8419f029b3916a81238556b3beec5de2a5c3ff9a356497470879294e7979b5fa3</originalsourceid><addsrcrecordid>eNpVkDtPwzAYRS0EEqWwMkdiTrH9-TlWFY9KPAbKHDmOTVOldrETUP49QWVhunc4ulc6CF0TvKBUq9vN22pNNMGEEcaWJ2hGAVgpiYBTNMPAWakViHN0kfMOYyGUkjP08mw-guvjdmxSbNpg9q0tmiH3Y7Ed69Q2RTAh-m6Y2sGlNvem6yfEd_G7aENhh_TlmsJuTQiuy5fozJsuu6u_nKP3-7vN6rF8en1Yr5ZPpQUs-1Ixoj2mugZNhFGEguJc1FA7Z3njqOEWvNcGuGBaMomV1FQzJ7XUNfcG5ujmuHtI8XNwua92cUhhuqyoIIIKSpSaqMWRsinmnJyvDqndmzRWBFe_zqr_zuAHY9tfCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616262188</pqid></control><display><type>article</type><title>Magnetohydrodinamic dusty hybrid nanofluid peristaltic flow in curved channels</title><source>ProQuest - Publicly Available Content Database</source><creator>Ahmed, Sameh ; Rashed, Zenab</creator><creatorcontrib>Ahmed, Sameh ; Rashed, Zenab</creatorcontrib><description>This paper presents numerical simulations for a MHD convective process in curved channels. The worked suspension consists of water as a based hybrid nanofluid and two types of the nanoparticles, namely, Cu and Al2O3. Two systems of the governing equations are formulated for the hybrid nanofluid and dusty phases. The hybrid nanofluid system is modeled in view of lubrication approach. The governing equations are mapped to a regular computational domain then they solved numerically using the fourth order Runge-Kutta method. The obtained findings revealed that the growing in the Hartmann number causes a reduction in both of the hybrid nanofluid and dusty velocities while the mixture temperature is enhanced. Also, the temperature distributions are supported when either the Grashof number or the amplitude ratio is altered.</description><identifier>ISSN: 0354-9836</identifier><identifier>EISSN: 2334-7163</identifier><identifier>DOI: 10.2298/TSCI191014144A</identifier><language>eng</language><publisher>Belgrade: Society of Thermal Engineers of Serbia</publisher><subject>Aluminum oxide ; Approximation ; Channels ; Grashof number ; Hartmann number ; Heat transfer ; Hybrid systems ; Magnetic fields ; Mathematical models ; Mathematics ; Nanofluids ; Nanoparticles ; Reynolds number ; Runge-Kutta method ; Science</subject><ispartof>Thermal science, 2021, Vol.25 (6 Part A), p.4241-4255</ispartof><rights>2021. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-8419f029b3916a81238556b3beec5de2a5c3ff9a356497470879294e7979b5fa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2616262188?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,25753,27923,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Ahmed, Sameh</creatorcontrib><creatorcontrib>Rashed, Zenab</creatorcontrib><title>Magnetohydrodinamic dusty hybrid nanofluid peristaltic flow in curved channels</title><title>Thermal science</title><description>This paper presents numerical simulations for a MHD convective process in curved channels. The worked suspension consists of water as a based hybrid nanofluid and two types of the nanoparticles, namely, Cu and Al2O3. Two systems of the governing equations are formulated for the hybrid nanofluid and dusty phases. The hybrid nanofluid system is modeled in view of lubrication approach. The governing equations are mapped to a regular computational domain then they solved numerically using the fourth order Runge-Kutta method. The obtained findings revealed that the growing in the Hartmann number causes a reduction in both of the hybrid nanofluid and dusty velocities while the mixture temperature is enhanced. Also, the temperature distributions are supported when either the Grashof number or the amplitude ratio is altered.</description><subject>Aluminum oxide</subject><subject>Approximation</subject><subject>Channels</subject><subject>Grashof number</subject><subject>Hartmann number</subject><subject>Heat transfer</subject><subject>Hybrid systems</subject><subject>Magnetic fields</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Reynolds number</subject><subject>Runge-Kutta method</subject><subject>Science</subject><issn>0354-9836</issn><issn>2334-7163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpVkDtPwzAYRS0EEqWwMkdiTrH9-TlWFY9KPAbKHDmOTVOldrETUP49QWVhunc4ulc6CF0TvKBUq9vN22pNNMGEEcaWJ2hGAVgpiYBTNMPAWakViHN0kfMOYyGUkjP08mw-guvjdmxSbNpg9q0tmiH3Y7Ed69Q2RTAh-m6Y2sGlNvem6yfEd_G7aENhh_TlmsJuTQiuy5fozJsuu6u_nKP3-7vN6rF8en1Yr5ZPpQUs-1Ixoj2mugZNhFGEguJc1FA7Z3njqOEWvNcGuGBaMomV1FQzJ7XUNfcG5ujmuHtI8XNwua92cUhhuqyoIIIKSpSaqMWRsinmnJyvDqndmzRWBFe_zqr_zuAHY9tfCA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ahmed, Sameh</creator><creator>Rashed, Zenab</creator><general>Society of Thermal Engineers of Serbia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>2021</creationdate><title>Magnetohydrodinamic dusty hybrid nanofluid peristaltic flow in curved channels</title><author>Ahmed, Sameh ; Rashed, Zenab</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-8419f029b3916a81238556b3beec5de2a5c3ff9a356497470879294e7979b5fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum oxide</topic><topic>Approximation</topic><topic>Channels</topic><topic>Grashof number</topic><topic>Hartmann number</topic><topic>Heat transfer</topic><topic>Hybrid systems</topic><topic>Magnetic fields</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Reynolds number</topic><topic>Runge-Kutta method</topic><topic>Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Sameh</creatorcontrib><creatorcontrib>Rashed, Zenab</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Thermal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Sameh</au><au>Rashed, Zenab</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetohydrodinamic dusty hybrid nanofluid peristaltic flow in curved channels</atitle><jtitle>Thermal science</jtitle><date>2021</date><risdate>2021</risdate><volume>25</volume><issue>6 Part A</issue><spage>4241</spage><epage>4255</epage><pages>4241-4255</pages><issn>0354-9836</issn><eissn>2334-7163</eissn><abstract>This paper presents numerical simulations for a MHD convective process in curved channels. The worked suspension consists of water as a based hybrid nanofluid and two types of the nanoparticles, namely, Cu and Al2O3. Two systems of the governing equations are formulated for the hybrid nanofluid and dusty phases. The hybrid nanofluid system is modeled in view of lubrication approach. The governing equations are mapped to a regular computational domain then they solved numerically using the fourth order Runge-Kutta method. The obtained findings revealed that the growing in the Hartmann number causes a reduction in both of the hybrid nanofluid and dusty velocities while the mixture temperature is enhanced. Also, the temperature distributions are supported when either the Grashof number or the amplitude ratio is altered.</abstract><cop>Belgrade</cop><pub>Society of Thermal Engineers of Serbia</pub><doi>10.2298/TSCI191014144A</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0354-9836
ispartof Thermal science, 2021, Vol.25 (6 Part A), p.4241-4255
issn 0354-9836
2334-7163
language eng
recordid cdi_proquest_journals_2616262188
source ProQuest - Publicly Available Content Database
subjects Aluminum oxide
Approximation
Channels
Grashof number
Hartmann number
Heat transfer
Hybrid systems
Magnetic fields
Mathematical models
Mathematics
Nanofluids
Nanoparticles
Reynolds number
Runge-Kutta method
Science
title Magnetohydrodinamic dusty hybrid nanofluid peristaltic flow in curved channels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A44%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetohydrodinamic%20dusty%20hybrid%20nanofluid%20peristaltic%20flow%20in%20curved%20channels&rft.jtitle=Thermal%20science&rft.au=Ahmed,%20Sameh&rft.date=2021&rft.volume=25&rft.issue=6%20Part%20A&rft.spage=4241&rft.epage=4255&rft.pages=4241-4255&rft.issn=0354-9836&rft.eissn=2334-7163&rft_id=info:doi/10.2298/TSCI191014144A&rft_dat=%3Cproquest_cross%3E2616262188%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c307t-8419f029b3916a81238556b3beec5de2a5c3ff9a356497470879294e7979b5fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2616262188&rft_id=info:pmid/&rfr_iscdi=true