Loading…

Front propagation and arrival times in networks with application to neurodegenerative diseases

Many physical, epidemiological, or physiological dynamical processes on networks support front-like propagation, where an initial localized perturbation grows and systematically invades all nodes in the network. A key question is then to extract estimates for the dynamics. In particular, if a single...

Full description

Saved in:
Bibliographic Details
Published in:bioRxiv 2022-01
Main Authors: Prama Setia Putra, Oliveri, Hadrien, Thompson, Travis B, Goriely, Alain
Format: Article
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title bioRxiv
container_volume
creator Prama Setia Putra
Oliveri, Hadrien
Thompson, Travis B
Goriely, Alain
description Many physical, epidemiological, or physiological dynamical processes on networks support front-like propagation, where an initial localized perturbation grows and systematically invades all nodes in the network. A key question is then to extract estimates for the dynamics. In particular, if a single node is seeded at a small concentration, when will other nodes reach the same initial concentration? Here, motivated by the study of toxic protein propagation in neurodegenerative diseases, we present and compare three different estimates for the arrival time in order of increasing analytical complexity: the linear arrival time, obtained by linearizing the underlying system; the Lambert time, obtained by considering the interaction of two nodes; and the nonlinear arrival time, obtained by asymptotic techniques. We use the classic Fisher-Kolmogorov-Petrovsky-Piskunov equation as a paradigm for the dynamics and show that each method provides different insight and time estimates. Further, we show that the nonlinear asymptotic method also gives an approximate solution valid in the entire domain and the correct ordering of arrival regions over large regions of parameters and initial conditions. Competing Interest Statement The authors have declared no competing interest.
doi_str_mv 10.1101/2022.01.04.474911
format article
fullrecord <record><control><sourceid>proquest_COVID</sourceid><recordid>TN_cdi_proquest_journals_2616786938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2616786938</sourcerecordid><originalsourceid>FETCH-LOGICAL-b1041-c73c4014b0dff3742e4fc163d533e640407f58eebb17299241ff11287eed41c83</originalsourceid><addsrcrecordid>eNotkE9LAzEQxYMgWKofwFvAi5ddZ5J0_xylWBUKXvTqkt2d1NQ2WZO01W_vynoaePPj8d5j7BohRwS8EyBEDpiDylWpasQzNhNFLbJKwOKCXcW4BQBRFyhLNWPvq-Bd4kPwg97oZL3j2vVch2CPeseT3VPk1nFH6eTDZ-Qnmz64Hoad7SY8-fF5CL6nDTkKo3gk3ttIOlK8ZOdG7yJd_d85e1s9vC6fsvXL4_Pyfp21CAqzrpSdAlQt9MaMuQQp02Eh-4WUVChQUJpFRdS2WIq6FgqNQRRVSdQr7Co5Z7eTb2t9-LbHZgh2r8NP8zdHA9iAaqY5RvRmQsfOXweKqdn6Q3BjukYUWJRVUctK_gJ4p2I7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616786938</pqid></control><display><type>article</type><title>Front propagation and arrival times in networks with application to neurodegenerative diseases</title><source>Coronavirus Research Database</source><creator>Prama Setia Putra ; Oliveri, Hadrien ; Thompson, Travis B ; Goriely, Alain</creator><creatorcontrib>Prama Setia Putra ; Oliveri, Hadrien ; Thompson, Travis B ; Goriely, Alain</creatorcontrib><description>Many physical, epidemiological, or physiological dynamical processes on networks support front-like propagation, where an initial localized perturbation grows and systematically invades all nodes in the network. A key question is then to extract estimates for the dynamics. In particular, if a single node is seeded at a small concentration, when will other nodes reach the same initial concentration? Here, motivated by the study of toxic protein propagation in neurodegenerative diseases, we present and compare three different estimates for the arrival time in order of increasing analytical complexity: the linear arrival time, obtained by linearizing the underlying system; the Lambert time, obtained by considering the interaction of two nodes; and the nonlinear arrival time, obtained by asymptotic techniques. We use the classic Fisher-Kolmogorov-Petrovsky-Piskunov equation as a paradigm for the dynamics and show that each method provides different insight and time estimates. Further, we show that the nonlinear asymptotic method also gives an approximate solution valid in the entire domain and the correct ordering of arrival regions over large regions of parameters and initial conditions. Competing Interest Statement The authors have declared no competing interest.</description><edition>1.1</edition><identifier>EISSN: 2692-8205</identifier><identifier>DOI: 10.1101/2022.01.04.474911</identifier><language>eng</language><publisher>Cold Spring Harbor: Cold Spring Harbor Laboratory Press</publisher><subject>Biophysics ; Epidemiology ; Neurodegenerative diseases ; Nodes ; Propagation</subject><ispartof>bioRxiv, 2022-01</ispartof><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022, Posted by Cold Spring Harbor Laboratory</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-8696-4115 ; 0000-0003-4045-9628 ; 0000-0002-5488-5567 ; 0000-0002-6436-8483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2616786938?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,776,780,881,27902,38493,43871</link.rule.ids><linktorsrc>$$Uhttps://www.proquest.com/docview/2616786938?pq-origsite=primo$$EView_record_in_ProQuest$$FView_record_in_$$GProQuest$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Prama Setia Putra</creatorcontrib><creatorcontrib>Oliveri, Hadrien</creatorcontrib><creatorcontrib>Thompson, Travis B</creatorcontrib><creatorcontrib>Goriely, Alain</creatorcontrib><title>Front propagation and arrival times in networks with application to neurodegenerative diseases</title><title>bioRxiv</title><description>Many physical, epidemiological, or physiological dynamical processes on networks support front-like propagation, where an initial localized perturbation grows and systematically invades all nodes in the network. A key question is then to extract estimates for the dynamics. In particular, if a single node is seeded at a small concentration, when will other nodes reach the same initial concentration? Here, motivated by the study of toxic protein propagation in neurodegenerative diseases, we present and compare three different estimates for the arrival time in order of increasing analytical complexity: the linear arrival time, obtained by linearizing the underlying system; the Lambert time, obtained by considering the interaction of two nodes; and the nonlinear arrival time, obtained by asymptotic techniques. We use the classic Fisher-Kolmogorov-Petrovsky-Piskunov equation as a paradigm for the dynamics and show that each method provides different insight and time estimates. Further, we show that the nonlinear asymptotic method also gives an approximate solution valid in the entire domain and the correct ordering of arrival regions over large regions of parameters and initial conditions. Competing Interest Statement The authors have declared no competing interest.</description><subject>Biophysics</subject><subject>Epidemiology</subject><subject>Neurodegenerative diseases</subject><subject>Nodes</subject><subject>Propagation</subject><issn>2692-8205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><recordid>eNotkE9LAzEQxYMgWKofwFvAi5ddZ5J0_xylWBUKXvTqkt2d1NQ2WZO01W_vynoaePPj8d5j7BohRwS8EyBEDpiDylWpasQzNhNFLbJKwOKCXcW4BQBRFyhLNWPvq-Bd4kPwg97oZL3j2vVch2CPeseT3VPk1nFH6eTDZ-Qnmz64Hoad7SY8-fF5CL6nDTkKo3gk3ttIOlK8ZOdG7yJd_d85e1s9vC6fsvXL4_Pyfp21CAqzrpSdAlQt9MaMuQQp02Eh-4WUVChQUJpFRdS2WIq6FgqNQRRVSdQr7Co5Z7eTb2t9-LbHZgh2r8NP8zdHA9iAaqY5RvRmQsfOXweKqdn6Q3BjukYUWJRVUctK_gJ4p2I7</recordid><startdate>20220105</startdate><enddate>20220105</enddate><creator>Prama Setia Putra</creator><creator>Oliveri, Hadrien</creator><creator>Thompson, Travis B</creator><creator>Goriely, Alain</creator><general>Cold Spring Harbor Laboratory Press</general><general>Cold Spring Harbor Laboratory</general><scope>8FE</scope><scope>8FH</scope><scope>AAFGM</scope><scope>AAMXL</scope><scope>ABOIG</scope><scope>ABUWG</scope><scope>ADZZV</scope><scope>AFKRA</scope><scope>AFLLJ</scope><scope>AFOLM</scope><scope>AGAJT</scope><scope>AQTIP</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQCXX</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>FX.</scope><orcidid>https://orcid.org/0000-0001-8696-4115</orcidid><orcidid>https://orcid.org/0000-0003-4045-9628</orcidid><orcidid>https://orcid.org/0000-0002-5488-5567</orcidid><orcidid>https://orcid.org/0000-0002-6436-8483</orcidid></search><sort><creationdate>20220105</creationdate><title>Front propagation and arrival times in networks with application to neurodegenerative diseases</title><author>Prama Setia Putra ; Oliveri, Hadrien ; Thompson, Travis B ; Goriely, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b1041-c73c4014b0dff3742e4fc163d533e640407f58eebb17299241ff11287eed41c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biophysics</topic><topic>Epidemiology</topic><topic>Neurodegenerative diseases</topic><topic>Nodes</topic><topic>Propagation</topic><toplevel>online_resources</toplevel><creatorcontrib>Prama Setia Putra</creatorcontrib><creatorcontrib>Oliveri, Hadrien</creatorcontrib><creatorcontrib>Thompson, Travis B</creatorcontrib><creatorcontrib>Goriely, Alain</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>bioRxiv</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Prama Setia Putra</au><au>Oliveri, Hadrien</au><au>Thompson, Travis B</au><au>Goriely, Alain</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Front propagation and arrival times in networks with application to neurodegenerative diseases</atitle><jtitle>bioRxiv</jtitle><date>2022-01-05</date><risdate>2022</risdate><eissn>2692-8205</eissn><abstract>Many physical, epidemiological, or physiological dynamical processes on networks support front-like propagation, where an initial localized perturbation grows and systematically invades all nodes in the network. A key question is then to extract estimates for the dynamics. In particular, if a single node is seeded at a small concentration, when will other nodes reach the same initial concentration? Here, motivated by the study of toxic protein propagation in neurodegenerative diseases, we present and compare three different estimates for the arrival time in order of increasing analytical complexity: the linear arrival time, obtained by linearizing the underlying system; the Lambert time, obtained by considering the interaction of two nodes; and the nonlinear arrival time, obtained by asymptotic techniques. We use the classic Fisher-Kolmogorov-Petrovsky-Piskunov equation as a paradigm for the dynamics and show that each method provides different insight and time estimates. Further, we show that the nonlinear asymptotic method also gives an approximate solution valid in the entire domain and the correct ordering of arrival regions over large regions of parameters and initial conditions. Competing Interest Statement The authors have declared no competing interest.</abstract><cop>Cold Spring Harbor</cop><pub>Cold Spring Harbor Laboratory Press</pub><doi>10.1101/2022.01.04.474911</doi><tpages>24</tpages><edition>1.1</edition><orcidid>https://orcid.org/0000-0001-8696-4115</orcidid><orcidid>https://orcid.org/0000-0003-4045-9628</orcidid><orcidid>https://orcid.org/0000-0002-5488-5567</orcidid><orcidid>https://orcid.org/0000-0002-6436-8483</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2692-8205
ispartof bioRxiv, 2022-01
issn 2692-8205
language eng
recordid cdi_proquest_journals_2616786938
source Coronavirus Research Database
subjects Biophysics
Epidemiology
Neurodegenerative diseases
Nodes
Propagation
title Front propagation and arrival times in networks with application to neurodegenerative diseases
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A42%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_COVID&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Front%20propagation%20and%20arrival%20times%20in%20networks%20with%20application%20to%20neurodegenerative%20diseases&rft.jtitle=bioRxiv&rft.au=Prama%20Setia%20Putra&rft.date=2022-01-05&rft.eissn=2692-8205&rft_id=info:doi/10.1101/2022.01.04.474911&rft_dat=%3Cproquest_COVID%3E2616786938%3C/proquest_COVID%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-b1041-c73c4014b0dff3742e4fc163d533e640407f58eebb17299241ff11287eed41c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2616786938&rft_id=info:pmid/&rfr_iscdi=true