Loading…

Ultrafast transient absorption spectroelectrochemistry: femtosecond to nanosecond excited-state relaxation dynamics of the individual components of an anthraquinone redox couple

Many photoactivated processes involve a change in oxidation state during the reaction pathway and formation of highly reactive photoactivated species. Isolating these reactive species and studying their early-stage femtosecond to nanosecond (fs-ns) photodynamics can be challenging. Here we introduce...

Full description

Saved in:
Bibliographic Details
Published in:Chemical science (Cambridge) 2022-01, Vol.13 (2), p.486-496
Main Authors: Goia, Sofia, Turner, Matthew A. P, Woolley, Jack M, Horbury, Michael D, Borrill, Alexandra J, Tully, Joshua J, Cobb, Samuel J, Staniforth, Michael, Hine, Nicholas D. M, Burriss, Adam, Macpherson, Julie V, Robinson, Ben R, Stavros, Vasilios G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c428t-e146449b7cd8c2aa0fe795bf17b22045a48c6a0a716fb68c53b7be66d4e49ed13
cites cdi_FETCH-LOGICAL-c428t-e146449b7cd8c2aa0fe795bf17b22045a48c6a0a716fb68c53b7be66d4e49ed13
container_end_page 496
container_issue 2
container_start_page 486
container_title Chemical science (Cambridge)
container_volume 13
creator Goia, Sofia
Turner, Matthew A. P
Woolley, Jack M
Horbury, Michael D
Borrill, Alexandra J
Tully, Joshua J
Cobb, Samuel J
Staniforth, Michael
Hine, Nicholas D. M
Burriss, Adam
Macpherson, Julie V
Robinson, Ben R
Stavros, Vasilios G
description Many photoactivated processes involve a change in oxidation state during the reaction pathway and formation of highly reactive photoactivated species. Isolating these reactive species and studying their early-stage femtosecond to nanosecond (fs-ns) photodynamics can be challenging. Here we introduce a combined ultrafast transient absorption-spectroelectrochemistry (TA-SEC) approach using freestanding boron doped diamond (BDD) mesh electrodes, which also extends the time domain of conventional spectrochemical measurements. The BDD electrodes offer a wide solvent window, low background currents, and a tuneable mesh size which minimises light scattering from the electrode itself. Importantly, reactive intermediates are generated electrochemically, via oxidation/reduction of the starting stable species, enabling their dynamic interrogation using ultrafast TA-SEC, through which the early stages of the photoinduced relaxation mechanisms are elucidated. As a model system, we investigate the ultrafast spectroscopy of both anthraquinone-2-sulfonate (AQS) and its less stable counterpart, anthrahydroquinone-2-sulfonate (AH 2 QS). This is achieved by generating AH 2 QS in situ from AQS via electrochemical means, whilst simultaneously probing the associated early-stage photoinduced dynamical processes. Using this approach we unravel the relaxation mechanisms occurring in the first 2.5 ns, following absorption of ultraviolet radiation; for AQS as an extension to previous studies, and for the first time for AH 2 QS. AQS relaxation occurs via formation of triplet states, with some of these states interacting with the buffered solution to form a transient species within approximately 600 ps. In contrast, all AH 2 QS undergoes excited-state single proton transfer with the buffered solution, resulting in formation of ground state AHQS − within approximately 150 ps. A spectroelectrochemical set-up using a boron doped diamond mesh electrode is presented; from ultrafast photodynamics to steady-state, the photochemistry and photophysics of redox active species and their reactive intermediates can be investigated.
doi_str_mv 10.1039/d1sc04993c
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2616916736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2616916736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-e146449b7cd8c2aa0fe795bf17b22045a48c6a0a716fb68c53b7be66d4e49ed13</originalsourceid><addsrcrecordid>eNpVksFu1DAQhi1URKvSC3cqS70hBew4cWIOSNVCC1IlDtBzNLEnXVeJndpOtftYvCFmt13AsjRj_5_-GXlMyBvO3nMm1AfDo2aVUkK_ICclq3gha6GODnnJjslZjPcsLyF4XTavyLGoeSlVy0_Ir9sxBRggJpqjixZdotBHH-ZkvaNxRp2Cx3EX9BonG1PYfqQDTslH1N4Zmjx14J5PuNE2oSligoQ04Agb2HmZrYPJ6kj9QNMaqXXGPlqzwEi1n2bvcu2dCC7vtA7wsFiXr7OJ8ZsMLfOIr8nLAcaIZ0_xlNxeffm5-lrcfL_-trq8KXRVtqlAXsmqUn2jTatLADZgo-p-4E1f5qepoWq1BAYNl0MvW12LvulRSlNhpdBwcUo-7X3npZ_Q6NxcgLGbg50gbDsPtvtfcXbd3fnHrm0E46XKBhdPBsE_LBhTd--X4HLPXSm5VFw2Qmbq3Z7SwccYcDhU4Kz7M-HuM_-x2k14leHzf3s6oM_zzMDbPRCiPqh_v4j4DZtAss4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616916736</pqid></control><display><type>article</type><title>Ultrafast transient absorption spectroelectrochemistry: femtosecond to nanosecond excited-state relaxation dynamics of the individual components of an anthraquinone redox couple</title><source>PubMed Central</source><creator>Goia, Sofia ; Turner, Matthew A. P ; Woolley, Jack M ; Horbury, Michael D ; Borrill, Alexandra J ; Tully, Joshua J ; Cobb, Samuel J ; Staniforth, Michael ; Hine, Nicholas D. M ; Burriss, Adam ; Macpherson, Julie V ; Robinson, Ben R ; Stavros, Vasilios G</creator><creatorcontrib>Goia, Sofia ; Turner, Matthew A. P ; Woolley, Jack M ; Horbury, Michael D ; Borrill, Alexandra J ; Tully, Joshua J ; Cobb, Samuel J ; Staniforth, Michael ; Hine, Nicholas D. M ; Burriss, Adam ; Macpherson, Julie V ; Robinson, Ben R ; Stavros, Vasilios G</creatorcontrib><description>Many photoactivated processes involve a change in oxidation state during the reaction pathway and formation of highly reactive photoactivated species. Isolating these reactive species and studying their early-stage femtosecond to nanosecond (fs-ns) photodynamics can be challenging. Here we introduce a combined ultrafast transient absorption-spectroelectrochemistry (TA-SEC) approach using freestanding boron doped diamond (BDD) mesh electrodes, which also extends the time domain of conventional spectrochemical measurements. The BDD electrodes offer a wide solvent window, low background currents, and a tuneable mesh size which minimises light scattering from the electrode itself. Importantly, reactive intermediates are generated electrochemically, via oxidation/reduction of the starting stable species, enabling their dynamic interrogation using ultrafast TA-SEC, through which the early stages of the photoinduced relaxation mechanisms are elucidated. As a model system, we investigate the ultrafast spectroscopy of both anthraquinone-2-sulfonate (AQS) and its less stable counterpart, anthrahydroquinone-2-sulfonate (AH 2 QS). This is achieved by generating AH 2 QS in situ from AQS via electrochemical means, whilst simultaneously probing the associated early-stage photoinduced dynamical processes. Using this approach we unravel the relaxation mechanisms occurring in the first 2.5 ns, following absorption of ultraviolet radiation; for AQS as an extension to previous studies, and for the first time for AH 2 QS. AQS relaxation occurs via formation of triplet states, with some of these states interacting with the buffered solution to form a transient species within approximately 600 ps. In contrast, all AH 2 QS undergoes excited-state single proton transfer with the buffered solution, resulting in formation of ground state AHQS − within approximately 150 ps. A spectroelectrochemical set-up using a boron doped diamond mesh electrode is presented; from ultrafast photodynamics to steady-state, the photochemistry and photophysics of redox active species and their reactive intermediates can be investigated.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d1sc04993c</identifier><identifier>PMID: 35126981</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Absorption ; Anthraquinones ; Buffers ; Chemistry ; Diamonds ; Excitation ; Finite element method ; Interrogation ; Oxidation ; Ultraviolet radiation ; Valence</subject><ispartof>Chemical science (Cambridge), 2022-01, Vol.13 (2), p.486-496</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2022</rights><rights>This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-e146449b7cd8c2aa0fe795bf17b22045a48c6a0a716fb68c53b7be66d4e49ed13</citedby><cites>FETCH-LOGICAL-c428t-e146449b7cd8c2aa0fe795bf17b22045a48c6a0a716fb68c53b7be66d4e49ed13</cites><orcidid>0000-0002-4492-0410 ; 0000-0001-5495-0181 ; 0000-0002-4249-8383 ; 0000-0001-8235-8142 ; 0000-0002-3893-3880 ; 0000-0002-9584-0437 ; 0000-0001-5613-3679 ; 0000-0002-6828-958X ; 0000-0001-5015-8090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8730129/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8730129/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35126981$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goia, Sofia</creatorcontrib><creatorcontrib>Turner, Matthew A. P</creatorcontrib><creatorcontrib>Woolley, Jack M</creatorcontrib><creatorcontrib>Horbury, Michael D</creatorcontrib><creatorcontrib>Borrill, Alexandra J</creatorcontrib><creatorcontrib>Tully, Joshua J</creatorcontrib><creatorcontrib>Cobb, Samuel J</creatorcontrib><creatorcontrib>Staniforth, Michael</creatorcontrib><creatorcontrib>Hine, Nicholas D. M</creatorcontrib><creatorcontrib>Burriss, Adam</creatorcontrib><creatorcontrib>Macpherson, Julie V</creatorcontrib><creatorcontrib>Robinson, Ben R</creatorcontrib><creatorcontrib>Stavros, Vasilios G</creatorcontrib><title>Ultrafast transient absorption spectroelectrochemistry: femtosecond to nanosecond excited-state relaxation dynamics of the individual components of an anthraquinone redox couple</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Many photoactivated processes involve a change in oxidation state during the reaction pathway and formation of highly reactive photoactivated species. Isolating these reactive species and studying their early-stage femtosecond to nanosecond (fs-ns) photodynamics can be challenging. Here we introduce a combined ultrafast transient absorption-spectroelectrochemistry (TA-SEC) approach using freestanding boron doped diamond (BDD) mesh electrodes, which also extends the time domain of conventional spectrochemical measurements. The BDD electrodes offer a wide solvent window, low background currents, and a tuneable mesh size which minimises light scattering from the electrode itself. Importantly, reactive intermediates are generated electrochemically, via oxidation/reduction of the starting stable species, enabling their dynamic interrogation using ultrafast TA-SEC, through which the early stages of the photoinduced relaxation mechanisms are elucidated. As a model system, we investigate the ultrafast spectroscopy of both anthraquinone-2-sulfonate (AQS) and its less stable counterpart, anthrahydroquinone-2-sulfonate (AH 2 QS). This is achieved by generating AH 2 QS in situ from AQS via electrochemical means, whilst simultaneously probing the associated early-stage photoinduced dynamical processes. Using this approach we unravel the relaxation mechanisms occurring in the first 2.5 ns, following absorption of ultraviolet radiation; for AQS as an extension to previous studies, and for the first time for AH 2 QS. AQS relaxation occurs via formation of triplet states, with some of these states interacting with the buffered solution to form a transient species within approximately 600 ps. In contrast, all AH 2 QS undergoes excited-state single proton transfer with the buffered solution, resulting in formation of ground state AHQS − within approximately 150 ps. A spectroelectrochemical set-up using a boron doped diamond mesh electrode is presented; from ultrafast photodynamics to steady-state, the photochemistry and photophysics of redox active species and their reactive intermediates can be investigated.</description><subject>Absorption</subject><subject>Anthraquinones</subject><subject>Buffers</subject><subject>Chemistry</subject><subject>Diamonds</subject><subject>Excitation</subject><subject>Finite element method</subject><subject>Interrogation</subject><subject>Oxidation</subject><subject>Ultraviolet radiation</subject><subject>Valence</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVksFu1DAQhi1URKvSC3cqS70hBew4cWIOSNVCC1IlDtBzNLEnXVeJndpOtftYvCFmt13AsjRj_5_-GXlMyBvO3nMm1AfDo2aVUkK_ICclq3gha6GODnnJjslZjPcsLyF4XTavyLGoeSlVy0_Ir9sxBRggJpqjixZdotBHH-ZkvaNxRp2Cx3EX9BonG1PYfqQDTslH1N4Zmjx14J5PuNE2oSligoQ04Agb2HmZrYPJ6kj9QNMaqXXGPlqzwEi1n2bvcu2dCC7vtA7wsFiXr7OJ8ZsMLfOIr8nLAcaIZ0_xlNxeffm5-lrcfL_-trq8KXRVtqlAXsmqUn2jTatLADZgo-p-4E1f5qepoWq1BAYNl0MvW12LvulRSlNhpdBwcUo-7X3npZ_Q6NxcgLGbg50gbDsPtvtfcXbd3fnHrm0E46XKBhdPBsE_LBhTd--X4HLPXSm5VFw2Qmbq3Z7SwccYcDhU4Kz7M-HuM_-x2k14leHzf3s6oM_zzMDbPRCiPqh_v4j4DZtAss4</recordid><startdate>20220105</startdate><enddate>20220105</enddate><creator>Goia, Sofia</creator><creator>Turner, Matthew A. P</creator><creator>Woolley, Jack M</creator><creator>Horbury, Michael D</creator><creator>Borrill, Alexandra J</creator><creator>Tully, Joshua J</creator><creator>Cobb, Samuel J</creator><creator>Staniforth, Michael</creator><creator>Hine, Nicholas D. M</creator><creator>Burriss, Adam</creator><creator>Macpherson, Julie V</creator><creator>Robinson, Ben R</creator><creator>Stavros, Vasilios G</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4492-0410</orcidid><orcidid>https://orcid.org/0000-0001-5495-0181</orcidid><orcidid>https://orcid.org/0000-0002-4249-8383</orcidid><orcidid>https://orcid.org/0000-0001-8235-8142</orcidid><orcidid>https://orcid.org/0000-0002-3893-3880</orcidid><orcidid>https://orcid.org/0000-0002-9584-0437</orcidid><orcidid>https://orcid.org/0000-0001-5613-3679</orcidid><orcidid>https://orcid.org/0000-0002-6828-958X</orcidid><orcidid>https://orcid.org/0000-0001-5015-8090</orcidid></search><sort><creationdate>20220105</creationdate><title>Ultrafast transient absorption spectroelectrochemistry: femtosecond to nanosecond excited-state relaxation dynamics of the individual components of an anthraquinone redox couple</title><author>Goia, Sofia ; Turner, Matthew A. P ; Woolley, Jack M ; Horbury, Michael D ; Borrill, Alexandra J ; Tully, Joshua J ; Cobb, Samuel J ; Staniforth, Michael ; Hine, Nicholas D. M ; Burriss, Adam ; Macpherson, Julie V ; Robinson, Ben R ; Stavros, Vasilios G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-e146449b7cd8c2aa0fe795bf17b22045a48c6a0a716fb68c53b7be66d4e49ed13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorption</topic><topic>Anthraquinones</topic><topic>Buffers</topic><topic>Chemistry</topic><topic>Diamonds</topic><topic>Excitation</topic><topic>Finite element method</topic><topic>Interrogation</topic><topic>Oxidation</topic><topic>Ultraviolet radiation</topic><topic>Valence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goia, Sofia</creatorcontrib><creatorcontrib>Turner, Matthew A. P</creatorcontrib><creatorcontrib>Woolley, Jack M</creatorcontrib><creatorcontrib>Horbury, Michael D</creatorcontrib><creatorcontrib>Borrill, Alexandra J</creatorcontrib><creatorcontrib>Tully, Joshua J</creatorcontrib><creatorcontrib>Cobb, Samuel J</creatorcontrib><creatorcontrib>Staniforth, Michael</creatorcontrib><creatorcontrib>Hine, Nicholas D. M</creatorcontrib><creatorcontrib>Burriss, Adam</creatorcontrib><creatorcontrib>Macpherson, Julie V</creatorcontrib><creatorcontrib>Robinson, Ben R</creatorcontrib><creatorcontrib>Stavros, Vasilios G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goia, Sofia</au><au>Turner, Matthew A. P</au><au>Woolley, Jack M</au><au>Horbury, Michael D</au><au>Borrill, Alexandra J</au><au>Tully, Joshua J</au><au>Cobb, Samuel J</au><au>Staniforth, Michael</au><au>Hine, Nicholas D. M</au><au>Burriss, Adam</au><au>Macpherson, Julie V</au><au>Robinson, Ben R</au><au>Stavros, Vasilios G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast transient absorption spectroelectrochemistry: femtosecond to nanosecond excited-state relaxation dynamics of the individual components of an anthraquinone redox couple</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2022-01-05</date><risdate>2022</risdate><volume>13</volume><issue>2</issue><spage>486</spage><epage>496</epage><pages>486-496</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Many photoactivated processes involve a change in oxidation state during the reaction pathway and formation of highly reactive photoactivated species. Isolating these reactive species and studying their early-stage femtosecond to nanosecond (fs-ns) photodynamics can be challenging. Here we introduce a combined ultrafast transient absorption-spectroelectrochemistry (TA-SEC) approach using freestanding boron doped diamond (BDD) mesh electrodes, which also extends the time domain of conventional spectrochemical measurements. The BDD electrodes offer a wide solvent window, low background currents, and a tuneable mesh size which minimises light scattering from the electrode itself. Importantly, reactive intermediates are generated electrochemically, via oxidation/reduction of the starting stable species, enabling their dynamic interrogation using ultrafast TA-SEC, through which the early stages of the photoinduced relaxation mechanisms are elucidated. As a model system, we investigate the ultrafast spectroscopy of both anthraquinone-2-sulfonate (AQS) and its less stable counterpart, anthrahydroquinone-2-sulfonate (AH 2 QS). This is achieved by generating AH 2 QS in situ from AQS via electrochemical means, whilst simultaneously probing the associated early-stage photoinduced dynamical processes. Using this approach we unravel the relaxation mechanisms occurring in the first 2.5 ns, following absorption of ultraviolet radiation; for AQS as an extension to previous studies, and for the first time for AH 2 QS. AQS relaxation occurs via formation of triplet states, with some of these states interacting with the buffered solution to form a transient species within approximately 600 ps. In contrast, all AH 2 QS undergoes excited-state single proton transfer with the buffered solution, resulting in formation of ground state AHQS − within approximately 150 ps. A spectroelectrochemical set-up using a boron doped diamond mesh electrode is presented; from ultrafast photodynamics to steady-state, the photochemistry and photophysics of redox active species and their reactive intermediates can be investigated.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35126981</pmid><doi>10.1039/d1sc04993c</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4492-0410</orcidid><orcidid>https://orcid.org/0000-0001-5495-0181</orcidid><orcidid>https://orcid.org/0000-0002-4249-8383</orcidid><orcidid>https://orcid.org/0000-0001-8235-8142</orcidid><orcidid>https://orcid.org/0000-0002-3893-3880</orcidid><orcidid>https://orcid.org/0000-0002-9584-0437</orcidid><orcidid>https://orcid.org/0000-0001-5613-3679</orcidid><orcidid>https://orcid.org/0000-0002-6828-958X</orcidid><orcidid>https://orcid.org/0000-0001-5015-8090</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-6520
ispartof Chemical science (Cambridge), 2022-01, Vol.13 (2), p.486-496
issn 2041-6520
2041-6539
language eng
recordid cdi_proquest_journals_2616916736
source PubMed Central
subjects Absorption
Anthraquinones
Buffers
Chemistry
Diamonds
Excitation
Finite element method
Interrogation
Oxidation
Ultraviolet radiation
Valence
title Ultrafast transient absorption spectroelectrochemistry: femtosecond to nanosecond excited-state relaxation dynamics of the individual components of an anthraquinone redox couple
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20transient%20absorption%20spectroelectrochemistry:%20femtosecond%20to%20nanosecond%20excited-state%20relaxation%20dynamics%20of%20the%20individual%20components%20of%20an%20anthraquinone%20redox%20couple&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Goia,%20Sofia&rft.date=2022-01-05&rft.volume=13&rft.issue=2&rft.spage=486&rft.epage=496&rft.pages=486-496&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d1sc04993c&rft_dat=%3Cproquest_pubme%3E2616916736%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-e146449b7cd8c2aa0fe795bf17b22045a48c6a0a716fb68c53b7be66d4e49ed13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2616916736&rft_id=info:pmid/35126981&rfr_iscdi=true