Loading…
Ultrafast transient absorption spectroelectrochemistry: femtosecond to nanosecond excited-state relaxation dynamics of the individual components of an anthraquinone redox couple
Many photoactivated processes involve a change in oxidation state during the reaction pathway and formation of highly reactive photoactivated species. Isolating these reactive species and studying their early-stage femtosecond to nanosecond (fs-ns) photodynamics can be challenging. Here we introduce...
Saved in:
Published in: | Chemical science (Cambridge) 2022-01, Vol.13 (2), p.486-496 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c428t-e146449b7cd8c2aa0fe795bf17b22045a48c6a0a716fb68c53b7be66d4e49ed13 |
---|---|
cites | cdi_FETCH-LOGICAL-c428t-e146449b7cd8c2aa0fe795bf17b22045a48c6a0a716fb68c53b7be66d4e49ed13 |
container_end_page | 496 |
container_issue | 2 |
container_start_page | 486 |
container_title | Chemical science (Cambridge) |
container_volume | 13 |
creator | Goia, Sofia Turner, Matthew A. P Woolley, Jack M Horbury, Michael D Borrill, Alexandra J Tully, Joshua J Cobb, Samuel J Staniforth, Michael Hine, Nicholas D. M Burriss, Adam Macpherson, Julie V Robinson, Ben R Stavros, Vasilios G |
description | Many photoactivated processes involve a change in oxidation state during the reaction pathway and formation of highly reactive photoactivated species. Isolating these reactive species and studying their early-stage femtosecond to nanosecond (fs-ns) photodynamics can be challenging. Here we introduce a combined ultrafast transient absorption-spectroelectrochemistry (TA-SEC) approach using freestanding boron doped diamond (BDD) mesh electrodes, which also extends the time domain of conventional spectrochemical measurements. The BDD electrodes offer a wide solvent window, low background currents, and a tuneable mesh size which minimises light scattering from the electrode itself. Importantly, reactive intermediates are generated electrochemically,
via
oxidation/reduction of the starting stable species, enabling their dynamic interrogation using ultrafast TA-SEC, through which the early stages of the photoinduced relaxation mechanisms are elucidated. As a model system, we investigate the ultrafast spectroscopy of both anthraquinone-2-sulfonate (AQS) and its less stable counterpart, anthrahydroquinone-2-sulfonate (AH
2
QS). This is achieved by generating AH
2
QS
in situ
from AQS
via
electrochemical means, whilst simultaneously probing the associated early-stage photoinduced dynamical processes. Using this approach we unravel the relaxation mechanisms occurring in the first 2.5 ns, following absorption of ultraviolet radiation; for AQS as an extension to previous studies, and for the first time for AH
2
QS. AQS relaxation occurs
via
formation of triplet states, with some of these states interacting with the buffered solution to form a transient species within approximately 600 ps. In contrast, all AH
2
QS undergoes excited-state single proton transfer with the buffered solution, resulting in formation of ground state AHQS
−
within approximately 150 ps.
A spectroelectrochemical set-up using a boron doped diamond mesh electrode is presented; from ultrafast photodynamics to steady-state, the photochemistry and photophysics of redox active species and their reactive intermediates can be investigated. |
doi_str_mv | 10.1039/d1sc04993c |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2616916736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2616916736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-e146449b7cd8c2aa0fe795bf17b22045a48c6a0a716fb68c53b7be66d4e49ed13</originalsourceid><addsrcrecordid>eNpVksFu1DAQhi1URKvSC3cqS70hBew4cWIOSNVCC1IlDtBzNLEnXVeJndpOtftYvCFmt13AsjRj_5_-GXlMyBvO3nMm1AfDo2aVUkK_ICclq3gha6GODnnJjslZjPcsLyF4XTavyLGoeSlVy0_Ir9sxBRggJpqjixZdotBHH-ZkvaNxRp2Cx3EX9BonG1PYfqQDTslH1N4Zmjx14J5PuNE2oSligoQ04Agb2HmZrYPJ6kj9QNMaqXXGPlqzwEi1n2bvcu2dCC7vtA7wsFiXr7OJ8ZsMLfOIr8nLAcaIZ0_xlNxeffm5-lrcfL_-trq8KXRVtqlAXsmqUn2jTatLADZgo-p-4E1f5qepoWq1BAYNl0MvW12LvulRSlNhpdBwcUo-7X3npZ_Q6NxcgLGbg50gbDsPtvtfcXbd3fnHrm0E46XKBhdPBsE_LBhTd--X4HLPXSm5VFw2Qmbq3Z7SwccYcDhU4Kz7M-HuM_-x2k14leHzf3s6oM_zzMDbPRCiPqh_v4j4DZtAss4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616916736</pqid></control><display><type>article</type><title>Ultrafast transient absorption spectroelectrochemistry: femtosecond to nanosecond excited-state relaxation dynamics of the individual components of an anthraquinone redox couple</title><source>PubMed Central</source><creator>Goia, Sofia ; Turner, Matthew A. P ; Woolley, Jack M ; Horbury, Michael D ; Borrill, Alexandra J ; Tully, Joshua J ; Cobb, Samuel J ; Staniforth, Michael ; Hine, Nicholas D. M ; Burriss, Adam ; Macpherson, Julie V ; Robinson, Ben R ; Stavros, Vasilios G</creator><creatorcontrib>Goia, Sofia ; Turner, Matthew A. P ; Woolley, Jack M ; Horbury, Michael D ; Borrill, Alexandra J ; Tully, Joshua J ; Cobb, Samuel J ; Staniforth, Michael ; Hine, Nicholas D. M ; Burriss, Adam ; Macpherson, Julie V ; Robinson, Ben R ; Stavros, Vasilios G</creatorcontrib><description>Many photoactivated processes involve a change in oxidation state during the reaction pathway and formation of highly reactive photoactivated species. Isolating these reactive species and studying their early-stage femtosecond to nanosecond (fs-ns) photodynamics can be challenging. Here we introduce a combined ultrafast transient absorption-spectroelectrochemistry (TA-SEC) approach using freestanding boron doped diamond (BDD) mesh electrodes, which also extends the time domain of conventional spectrochemical measurements. The BDD electrodes offer a wide solvent window, low background currents, and a tuneable mesh size which minimises light scattering from the electrode itself. Importantly, reactive intermediates are generated electrochemically,
via
oxidation/reduction of the starting stable species, enabling their dynamic interrogation using ultrafast TA-SEC, through which the early stages of the photoinduced relaxation mechanisms are elucidated. As a model system, we investigate the ultrafast spectroscopy of both anthraquinone-2-sulfonate (AQS) and its less stable counterpart, anthrahydroquinone-2-sulfonate (AH
2
QS). This is achieved by generating AH
2
QS
in situ
from AQS
via
electrochemical means, whilst simultaneously probing the associated early-stage photoinduced dynamical processes. Using this approach we unravel the relaxation mechanisms occurring in the first 2.5 ns, following absorption of ultraviolet radiation; for AQS as an extension to previous studies, and for the first time for AH
2
QS. AQS relaxation occurs
via
formation of triplet states, with some of these states interacting with the buffered solution to form a transient species within approximately 600 ps. In contrast, all AH
2
QS undergoes excited-state single proton transfer with the buffered solution, resulting in formation of ground state AHQS
−
within approximately 150 ps.
A spectroelectrochemical set-up using a boron doped diamond mesh electrode is presented; from ultrafast photodynamics to steady-state, the photochemistry and photophysics of redox active species and their reactive intermediates can be investigated.</description><identifier>ISSN: 2041-6520</identifier><identifier>EISSN: 2041-6539</identifier><identifier>DOI: 10.1039/d1sc04993c</identifier><identifier>PMID: 35126981</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Absorption ; Anthraquinones ; Buffers ; Chemistry ; Diamonds ; Excitation ; Finite element method ; Interrogation ; Oxidation ; Ultraviolet radiation ; Valence</subject><ispartof>Chemical science (Cambridge), 2022-01, Vol.13 (2), p.486-496</ispartof><rights>This journal is © The Royal Society of Chemistry.</rights><rights>Copyright Royal Society of Chemistry 2022</rights><rights>This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-e146449b7cd8c2aa0fe795bf17b22045a48c6a0a716fb68c53b7be66d4e49ed13</citedby><cites>FETCH-LOGICAL-c428t-e146449b7cd8c2aa0fe795bf17b22045a48c6a0a716fb68c53b7be66d4e49ed13</cites><orcidid>0000-0002-4492-0410 ; 0000-0001-5495-0181 ; 0000-0002-4249-8383 ; 0000-0001-8235-8142 ; 0000-0002-3893-3880 ; 0000-0002-9584-0437 ; 0000-0001-5613-3679 ; 0000-0002-6828-958X ; 0000-0001-5015-8090</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8730129/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8730129/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35126981$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goia, Sofia</creatorcontrib><creatorcontrib>Turner, Matthew A. P</creatorcontrib><creatorcontrib>Woolley, Jack M</creatorcontrib><creatorcontrib>Horbury, Michael D</creatorcontrib><creatorcontrib>Borrill, Alexandra J</creatorcontrib><creatorcontrib>Tully, Joshua J</creatorcontrib><creatorcontrib>Cobb, Samuel J</creatorcontrib><creatorcontrib>Staniforth, Michael</creatorcontrib><creatorcontrib>Hine, Nicholas D. M</creatorcontrib><creatorcontrib>Burriss, Adam</creatorcontrib><creatorcontrib>Macpherson, Julie V</creatorcontrib><creatorcontrib>Robinson, Ben R</creatorcontrib><creatorcontrib>Stavros, Vasilios G</creatorcontrib><title>Ultrafast transient absorption spectroelectrochemistry: femtosecond to nanosecond excited-state relaxation dynamics of the individual components of an anthraquinone redox couple</title><title>Chemical science (Cambridge)</title><addtitle>Chem Sci</addtitle><description>Many photoactivated processes involve a change in oxidation state during the reaction pathway and formation of highly reactive photoactivated species. Isolating these reactive species and studying their early-stage femtosecond to nanosecond (fs-ns) photodynamics can be challenging. Here we introduce a combined ultrafast transient absorption-spectroelectrochemistry (TA-SEC) approach using freestanding boron doped diamond (BDD) mesh electrodes, which also extends the time domain of conventional spectrochemical measurements. The BDD electrodes offer a wide solvent window, low background currents, and a tuneable mesh size which minimises light scattering from the electrode itself. Importantly, reactive intermediates are generated electrochemically,
via
oxidation/reduction of the starting stable species, enabling their dynamic interrogation using ultrafast TA-SEC, through which the early stages of the photoinduced relaxation mechanisms are elucidated. As a model system, we investigate the ultrafast spectroscopy of both anthraquinone-2-sulfonate (AQS) and its less stable counterpart, anthrahydroquinone-2-sulfonate (AH
2
QS). This is achieved by generating AH
2
QS
in situ
from AQS
via
electrochemical means, whilst simultaneously probing the associated early-stage photoinduced dynamical processes. Using this approach we unravel the relaxation mechanisms occurring in the first 2.5 ns, following absorption of ultraviolet radiation; for AQS as an extension to previous studies, and for the first time for AH
2
QS. AQS relaxation occurs
via
formation of triplet states, with some of these states interacting with the buffered solution to form a transient species within approximately 600 ps. In contrast, all AH
2
QS undergoes excited-state single proton transfer with the buffered solution, resulting in formation of ground state AHQS
−
within approximately 150 ps.
A spectroelectrochemical set-up using a boron doped diamond mesh electrode is presented; from ultrafast photodynamics to steady-state, the photochemistry and photophysics of redox active species and their reactive intermediates can be investigated.</description><subject>Absorption</subject><subject>Anthraquinones</subject><subject>Buffers</subject><subject>Chemistry</subject><subject>Diamonds</subject><subject>Excitation</subject><subject>Finite element method</subject><subject>Interrogation</subject><subject>Oxidation</subject><subject>Ultraviolet radiation</subject><subject>Valence</subject><issn>2041-6520</issn><issn>2041-6539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVksFu1DAQhi1URKvSC3cqS70hBew4cWIOSNVCC1IlDtBzNLEnXVeJndpOtftYvCFmt13AsjRj_5_-GXlMyBvO3nMm1AfDo2aVUkK_ICclq3gha6GODnnJjslZjPcsLyF4XTavyLGoeSlVy0_Ir9sxBRggJpqjixZdotBHH-ZkvaNxRp2Cx3EX9BonG1PYfqQDTslH1N4Zmjx14J5PuNE2oSligoQ04Agb2HmZrYPJ6kj9QNMaqXXGPlqzwEi1n2bvcu2dCC7vtA7wsFiXr7OJ8ZsMLfOIr8nLAcaIZ0_xlNxeffm5-lrcfL_-trq8KXRVtqlAXsmqUn2jTatLADZgo-p-4E1f5qepoWq1BAYNl0MvW12LvulRSlNhpdBwcUo-7X3npZ_Q6NxcgLGbg50gbDsPtvtfcXbd3fnHrm0E46XKBhdPBsE_LBhTd--X4HLPXSm5VFw2Qmbq3Z7SwccYcDhU4Kz7M-HuM_-x2k14leHzf3s6oM_zzMDbPRCiPqh_v4j4DZtAss4</recordid><startdate>20220105</startdate><enddate>20220105</enddate><creator>Goia, Sofia</creator><creator>Turner, Matthew A. P</creator><creator>Woolley, Jack M</creator><creator>Horbury, Michael D</creator><creator>Borrill, Alexandra J</creator><creator>Tully, Joshua J</creator><creator>Cobb, Samuel J</creator><creator>Staniforth, Michael</creator><creator>Hine, Nicholas D. M</creator><creator>Burriss, Adam</creator><creator>Macpherson, Julie V</creator><creator>Robinson, Ben R</creator><creator>Stavros, Vasilios G</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4492-0410</orcidid><orcidid>https://orcid.org/0000-0001-5495-0181</orcidid><orcidid>https://orcid.org/0000-0002-4249-8383</orcidid><orcidid>https://orcid.org/0000-0001-8235-8142</orcidid><orcidid>https://orcid.org/0000-0002-3893-3880</orcidid><orcidid>https://orcid.org/0000-0002-9584-0437</orcidid><orcidid>https://orcid.org/0000-0001-5613-3679</orcidid><orcidid>https://orcid.org/0000-0002-6828-958X</orcidid><orcidid>https://orcid.org/0000-0001-5015-8090</orcidid></search><sort><creationdate>20220105</creationdate><title>Ultrafast transient absorption spectroelectrochemistry: femtosecond to nanosecond excited-state relaxation dynamics of the individual components of an anthraquinone redox couple</title><author>Goia, Sofia ; Turner, Matthew A. P ; Woolley, Jack M ; Horbury, Michael D ; Borrill, Alexandra J ; Tully, Joshua J ; Cobb, Samuel J ; Staniforth, Michael ; Hine, Nicholas D. M ; Burriss, Adam ; Macpherson, Julie V ; Robinson, Ben R ; Stavros, Vasilios G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-e146449b7cd8c2aa0fe795bf17b22045a48c6a0a716fb68c53b7be66d4e49ed13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorption</topic><topic>Anthraquinones</topic><topic>Buffers</topic><topic>Chemistry</topic><topic>Diamonds</topic><topic>Excitation</topic><topic>Finite element method</topic><topic>Interrogation</topic><topic>Oxidation</topic><topic>Ultraviolet radiation</topic><topic>Valence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goia, Sofia</creatorcontrib><creatorcontrib>Turner, Matthew A. P</creatorcontrib><creatorcontrib>Woolley, Jack M</creatorcontrib><creatorcontrib>Horbury, Michael D</creatorcontrib><creatorcontrib>Borrill, Alexandra J</creatorcontrib><creatorcontrib>Tully, Joshua J</creatorcontrib><creatorcontrib>Cobb, Samuel J</creatorcontrib><creatorcontrib>Staniforth, Michael</creatorcontrib><creatorcontrib>Hine, Nicholas D. M</creatorcontrib><creatorcontrib>Burriss, Adam</creatorcontrib><creatorcontrib>Macpherson, Julie V</creatorcontrib><creatorcontrib>Robinson, Ben R</creatorcontrib><creatorcontrib>Stavros, Vasilios G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemical science (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goia, Sofia</au><au>Turner, Matthew A. P</au><au>Woolley, Jack M</au><au>Horbury, Michael D</au><au>Borrill, Alexandra J</au><au>Tully, Joshua J</au><au>Cobb, Samuel J</au><au>Staniforth, Michael</au><au>Hine, Nicholas D. M</au><au>Burriss, Adam</au><au>Macpherson, Julie V</au><au>Robinson, Ben R</au><au>Stavros, Vasilios G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrafast transient absorption spectroelectrochemistry: femtosecond to nanosecond excited-state relaxation dynamics of the individual components of an anthraquinone redox couple</atitle><jtitle>Chemical science (Cambridge)</jtitle><addtitle>Chem Sci</addtitle><date>2022-01-05</date><risdate>2022</risdate><volume>13</volume><issue>2</issue><spage>486</spage><epage>496</epage><pages>486-496</pages><issn>2041-6520</issn><eissn>2041-6539</eissn><abstract>Many photoactivated processes involve a change in oxidation state during the reaction pathway and formation of highly reactive photoactivated species. Isolating these reactive species and studying their early-stage femtosecond to nanosecond (fs-ns) photodynamics can be challenging. Here we introduce a combined ultrafast transient absorption-spectroelectrochemistry (TA-SEC) approach using freestanding boron doped diamond (BDD) mesh electrodes, which also extends the time domain of conventional spectrochemical measurements. The BDD electrodes offer a wide solvent window, low background currents, and a tuneable mesh size which minimises light scattering from the electrode itself. Importantly, reactive intermediates are generated electrochemically,
via
oxidation/reduction of the starting stable species, enabling their dynamic interrogation using ultrafast TA-SEC, through which the early stages of the photoinduced relaxation mechanisms are elucidated. As a model system, we investigate the ultrafast spectroscopy of both anthraquinone-2-sulfonate (AQS) and its less stable counterpart, anthrahydroquinone-2-sulfonate (AH
2
QS). This is achieved by generating AH
2
QS
in situ
from AQS
via
electrochemical means, whilst simultaneously probing the associated early-stage photoinduced dynamical processes. Using this approach we unravel the relaxation mechanisms occurring in the first 2.5 ns, following absorption of ultraviolet radiation; for AQS as an extension to previous studies, and for the first time for AH
2
QS. AQS relaxation occurs
via
formation of triplet states, with some of these states interacting with the buffered solution to form a transient species within approximately 600 ps. In contrast, all AH
2
QS undergoes excited-state single proton transfer with the buffered solution, resulting in formation of ground state AHQS
−
within approximately 150 ps.
A spectroelectrochemical set-up using a boron doped diamond mesh electrode is presented; from ultrafast photodynamics to steady-state, the photochemistry and photophysics of redox active species and their reactive intermediates can be investigated.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35126981</pmid><doi>10.1039/d1sc04993c</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4492-0410</orcidid><orcidid>https://orcid.org/0000-0001-5495-0181</orcidid><orcidid>https://orcid.org/0000-0002-4249-8383</orcidid><orcidid>https://orcid.org/0000-0001-8235-8142</orcidid><orcidid>https://orcid.org/0000-0002-3893-3880</orcidid><orcidid>https://orcid.org/0000-0002-9584-0437</orcidid><orcidid>https://orcid.org/0000-0001-5613-3679</orcidid><orcidid>https://orcid.org/0000-0002-6828-958X</orcidid><orcidid>https://orcid.org/0000-0001-5015-8090</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-6520 |
ispartof | Chemical science (Cambridge), 2022-01, Vol.13 (2), p.486-496 |
issn | 2041-6520 2041-6539 |
language | eng |
recordid | cdi_proquest_journals_2616916736 |
source | PubMed Central |
subjects | Absorption Anthraquinones Buffers Chemistry Diamonds Excitation Finite element method Interrogation Oxidation Ultraviolet radiation Valence |
title | Ultrafast transient absorption spectroelectrochemistry: femtosecond to nanosecond excited-state relaxation dynamics of the individual components of an anthraquinone redox couple |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T23%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrafast%20transient%20absorption%20spectroelectrochemistry:%20femtosecond%20to%20nanosecond%20excited-state%20relaxation%20dynamics%20of%20the%20individual%20components%20of%20an%20anthraquinone%20redox%20couple&rft.jtitle=Chemical%20science%20(Cambridge)&rft.au=Goia,%20Sofia&rft.date=2022-01-05&rft.volume=13&rft.issue=2&rft.spage=486&rft.epage=496&rft.pages=486-496&rft.issn=2041-6520&rft.eissn=2041-6539&rft_id=info:doi/10.1039/d1sc04993c&rft_dat=%3Cproquest_pubme%3E2616916736%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-e146449b7cd8c2aa0fe795bf17b22045a48c6a0a716fb68c53b7be66d4e49ed13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2616916736&rft_id=info:pmid/35126981&rfr_iscdi=true |