Loading…
Local Spanners Revisited
\(\newcommand{\Emph}[1]{{\it{#1}}} \newcommand{\FF}{\mathcal{F}}\newcommand{\region}{\mathsf{r}}\newcommand{\restrictY}[2]{#1 \cap {#2}}\)For a set of points \(P \subseteq \mathbb{R}^2\), and a family of regions \(\FF\), a \(\Emph{local~t-spanner}\) of \(P\), is a sparse graph \(G\) over \(P\), such...
Saved in:
Published in: | arXiv.org 2022-01 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ashur, Stav Har-Peled, Sariel |
description | \(\newcommand{\Emph}[1]{{\it{#1}}} \newcommand{\FF}{\mathcal{F}}\newcommand{\region}{\mathsf{r}}\newcommand{\restrictY}[2]{#1 \cap {#2}}\)For a set of points \(P \subseteq \mathbb{R}^2\), and a family of regions \(\FF\), a \(\Emph{local~t-spanner}\) of \(P\), is a sparse graph \(G\) over \(P\), such that, for any region \(\region \in \FF\), the subgraph restricted to \(\region\), denoted by \(\restrictY{G}{\region} = G_{P \cap \region}\), is a \(t\)-spanner for all the points of \(\region \cap P\). We present algorithms for the construction of local spanners with respect to several families of regions, such as homothets of a convex region. Unfortunately, the number of edges in the resulting graph depends logarithmically on the spread of the input point set. We prove that this dependency can not be removed, thus settling an open problem raised by Abam and Borouny. We also show improved constructions (with no dependency on the spread) of local spanners for fat triangles, and regular \(k\)-gons. In particular, this improves over the known construction for axis parallel squares. We also study a somewhat weaker notion of local spanner where one allows to shrink the region a "bit". Any spanner is a weak local spanner if the shrinking is proportional to the diameter. Surprisingly, we show a near linear size construction of a weak spanner for axis-parallel rectangles, where the shrinkage is \(\Emph{multiplicative}\). |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2617118344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2617118344</sourcerecordid><originalsourceid>FETCH-proquest_journals_26171183443</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQ8MlPTsxRCC5IzMtLLSpWCEotyyzOLElN4WFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMzQ3NDQwtjExNj4lQBAFxwKgs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617118344</pqid></control><display><type>article</type><title>Local Spanners Revisited</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Ashur, Stav ; Har-Peled, Sariel</creator><creatorcontrib>Ashur, Stav ; Har-Peled, Sariel</creatorcontrib><description>\(\newcommand{\Emph}[1]{{\it{#1}}} \newcommand{\FF}{\mathcal{F}}\newcommand{\region}{\mathsf{r}}\newcommand{\restrictY}[2]{#1 \cap {#2}}\)For a set of points \(P \subseteq \mathbb{R}^2\), and a family of regions \(\FF\), a \(\Emph{local~t-spanner}\) of \(P\), is a sparse graph \(G\) over \(P\), such that, for any region \(\region \in \FF\), the subgraph restricted to \(\region\), denoted by \(\restrictY{G}{\region} = G_{P \cap \region}\), is a \(t\)-spanner for all the points of \(\region \cap P\). We present algorithms for the construction of local spanners with respect to several families of regions, such as homothets of a convex region. Unfortunately, the number of edges in the resulting graph depends logarithmically on the spread of the input point set. We prove that this dependency can not be removed, thus settling an open problem raised by Abam and Borouny. We also show improved constructions (with no dependency on the spread) of local spanners for fat triangles, and regular \(k\)-gons. In particular, this improves over the known construction for axis parallel squares. We also study a somewhat weaker notion of local spanner where one allows to shrink the region a "bit". Any spanner is a weak local spanner if the shrinking is proportional to the diameter. Surprisingly, we show a near linear size construction of a weak spanner for axis-parallel rectangles, where the shrinkage is \(\Emph{multiplicative}\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Graph theory ; Rectangles</subject><ispartof>arXiv.org, 2022-01</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2617118344?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25744,37003,44581</link.rule.ids></links><search><creatorcontrib>Ashur, Stav</creatorcontrib><creatorcontrib>Har-Peled, Sariel</creatorcontrib><title>Local Spanners Revisited</title><title>arXiv.org</title><description>\(\newcommand{\Emph}[1]{{\it{#1}}} \newcommand{\FF}{\mathcal{F}}\newcommand{\region}{\mathsf{r}}\newcommand{\restrictY}[2]{#1 \cap {#2}}\)For a set of points \(P \subseteq \mathbb{R}^2\), and a family of regions \(\FF\), a \(\Emph{local~t-spanner}\) of \(P\), is a sparse graph \(G\) over \(P\), such that, for any region \(\region \in \FF\), the subgraph restricted to \(\region\), denoted by \(\restrictY{G}{\region} = G_{P \cap \region}\), is a \(t\)-spanner for all the points of \(\region \cap P\). We present algorithms for the construction of local spanners with respect to several families of regions, such as homothets of a convex region. Unfortunately, the number of edges in the resulting graph depends logarithmically on the spread of the input point set. We prove that this dependency can not be removed, thus settling an open problem raised by Abam and Borouny. We also show improved constructions (with no dependency on the spread) of local spanners for fat triangles, and regular \(k\)-gons. In particular, this improves over the known construction for axis parallel squares. We also study a somewhat weaker notion of local spanner where one allows to shrink the region a "bit". Any spanner is a weak local spanner if the shrinking is proportional to the diameter. Surprisingly, we show a near linear size construction of a weak spanner for axis-parallel rectangles, where the shrinkage is \(\Emph{multiplicative}\).</description><subject>Algorithms</subject><subject>Graph theory</subject><subject>Rectangles</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQ8MlPTsxRCC5IzMtLLSpWCEotyyzOLElN4WFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMzQ3NDQwtjExNj4lQBAFxwKgs</recordid><startdate>20220105</startdate><enddate>20220105</enddate><creator>Ashur, Stav</creator><creator>Har-Peled, Sariel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220105</creationdate><title>Local Spanners Revisited</title><author>Ashur, Stav ; Har-Peled, Sariel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26171183443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Graph theory</topic><topic>Rectangles</topic><toplevel>online_resources</toplevel><creatorcontrib>Ashur, Stav</creatorcontrib><creatorcontrib>Har-Peled, Sariel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashur, Stav</au><au>Har-Peled, Sariel</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Local Spanners Revisited</atitle><jtitle>arXiv.org</jtitle><date>2022-01-05</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>\(\newcommand{\Emph}[1]{{\it{#1}}} \newcommand{\FF}{\mathcal{F}}\newcommand{\region}{\mathsf{r}}\newcommand{\restrictY}[2]{#1 \cap {#2}}\)For a set of points \(P \subseteq \mathbb{R}^2\), and a family of regions \(\FF\), a \(\Emph{local~t-spanner}\) of \(P\), is a sparse graph \(G\) over \(P\), such that, for any region \(\region \in \FF\), the subgraph restricted to \(\region\), denoted by \(\restrictY{G}{\region} = G_{P \cap \region}\), is a \(t\)-spanner for all the points of \(\region \cap P\). We present algorithms for the construction of local spanners with respect to several families of regions, such as homothets of a convex region. Unfortunately, the number of edges in the resulting graph depends logarithmically on the spread of the input point set. We prove that this dependency can not be removed, thus settling an open problem raised by Abam and Borouny. We also show improved constructions (with no dependency on the spread) of local spanners for fat triangles, and regular \(k\)-gons. In particular, this improves over the known construction for axis parallel squares. We also study a somewhat weaker notion of local spanner where one allows to shrink the region a "bit". Any spanner is a weak local spanner if the shrinking is proportional to the diameter. Surprisingly, we show a near linear size construction of a weak spanner for axis-parallel rectangles, where the shrinkage is \(\Emph{multiplicative}\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2617118344 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Algorithms Graph theory Rectangles |
title | Local Spanners Revisited |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T00%3A22%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Local%20Spanners%20Revisited&rft.jtitle=arXiv.org&rft.au=Ashur,%20Stav&rft.date=2022-01-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2617118344%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_26171183443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2617118344&rft_id=info:pmid/&rfr_iscdi=true |