Loading…

Metabolic responses of sugar beet to the combined effect of root hypoxia and NaCl-salinity

The combined occurrence of salt stress and hypoxia leads to increased growth reduction and severe toxic effects compared to salt stress alone. In the present work, we analyzed the metabolic response of sugar beet (Beta vulgaris L.) to salt stress combined with hypoxia in roots as well as in young an...

Full description

Saved in:
Bibliographic Details
Published in:Journal of plant physiology 2021-12, Vol.267, p.153545, Article 153545
Main Authors: Behr, Jan Helge, Bednarz, Hanna, Gödde, Victoria, Niehaus, Karsten, Zörb, Christian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The combined occurrence of salt stress and hypoxia leads to increased growth reduction and severe toxic effects compared to salt stress alone. In the present work, we analyzed the metabolic response of sugar beet (Beta vulgaris L.) to salt stress combined with hypoxia in roots as well as in young and mature leaves. B. vulgaris plants were grown in a hydroponic culture under low and high salt concentrations combined with normoxic and hypoxic conditions. A non-targeted metabolic approach was used to identify the biochemical pathways underlying the metabolic and physiological adaptation mechanisms. Young and mature leaves showed a similar metabolic response to salt stress alone and combined stresses, accumulating sugar compounds. Osmoprotectants such as proline and pinitol were accumulated under combined stress. Roots exposed to hypoxic conditions showed increased TCA (tricarboxylic acid cycle) intermediates levels such as succinate, fumarate and malate. During hypoxia, the concentration of free amino acids as well as intermediates of the GABA (gamma-aminobutyric acid) shunt increased in roots as well as in leaves. The combination of salt stress and hypoxia results in a severe stress response in roots and leaves. A partial flux of the TCA cycle linked with the GABA shunt might be activated during hypoxia to regain reduction equivalents.
ISSN:0176-1617
1618-1328
DOI:10.1016/j.jplph.2021.153545