Loading…
Augmentation Invariant and Instance Spreading Feature for Softmax Embedding
Deep embedding learning plays a key role in learning discriminative feature representations, where the visually similar samples are pulled closer and dissimilar samples are pushed away in the low-dimensional embedding space. This paper studies the unsupervised embedding learning problem by learning...
Saved in:
Published in: | IEEE transactions on pattern analysis and machine intelligence 2022-02, Vol.44 (2), p.924-939 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c351t-9d39e775f33f3ad7b9e8b251900c428834c528df4f28d324376cd9475d3cd3493 |
---|---|
cites | cdi_FETCH-LOGICAL-c351t-9d39e775f33f3ad7b9e8b251900c428834c528df4f28d324376cd9475d3cd3493 |
container_end_page | 939 |
container_issue | 2 |
container_start_page | 924 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 44 |
creator | Ye, Mang Shen, Jianbing Zhang, Xu Yuen, Pong C. Chang, Shih-Fu |
description | Deep embedding learning plays a key role in learning discriminative feature representations, where the visually similar samples are pulled closer and dissimilar samples are pushed away in the low-dimensional embedding space. This paper studies the unsupervised embedding learning problem by learning such a representation without using any category labels. This task faces two primary challenges: mining reliable positive supervision from highly similar fine-grained classes, and generalizing to unseen testing categories. To approximate the positive concentration and negative separation properties in category-wise supervised learning, we introduce a data augmentation invariant and instance spreading feature using the instance-wise supervision. We also design two novel domain-agnostic augmentation strategies to further extend the supervision in feature space, which simulates the large batch training using a small batch size and the augmented features. To learn such a representation, we propose a novel instance-wise softmax embedding, which directly perform the optimization over the augmented instance features with the binary discrmination softmax encoding. It significantly accelerates the learning speed with much higher accuracy than existing methods, under both seen and unseen testing categories. The unsupervised embedding performs well even without pre-trained network over samples from fine-grained categories. We also develop a variant using category-wise supervision, namely category-wise softmax embedding, which achieves competitive performance over the state-of-of-the-arts, without using any auxiliary information or restrict sample mining. |
doi_str_mv | 10.1109/TPAMI.2020.3013379 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2617491720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9154587</ieee_id><sourcerecordid>2430662231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-9d39e775f33f3ad7b9e8b251900c428834c528df4f28d324376cd9475d3cd3493</originalsourceid><addsrcrecordid>eNpdkE1LxDAQhoMoun78AQUpePHSNckkTXJcFj8WFQX1HLLNVCrbdE1a0X9v1109eJlhmOcdhoeQY0bHjFFz8fw4uZ-NOeV0DJQBKLNFRsyAyUGC2SYjygqea831HtlP6Y1SJiSFXbIHXEmqBRuR20n_2mDoXFe3IZuFDxdrF7rMBT9MqXOhxOxpGdH5OrxmV-i6PmJWtTF7aquucZ_ZZTNHv9oekp3KLRIebfoBebm6fJ7e5HcP17Pp5C4vQbIuNx4MKiUrgAqcV3ODes4lM5SWgmsNopRc-0pUQwUuQBWlN0JJD6UHYeCAnK_vLmP73mPqbFOnEhcLF7Dtkx0itCg4BzagZ__Qt7aPYfjO8oIpYZjidKD4mipjm1LEyi5j3bj4ZRm1K9X2R7VdqbYb1UPodHO6nzfo_yK_bgfgZA3UiPi3NkwKqRV8AxGLgLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2617491720</pqid></control><display><type>article</type><title>Augmentation Invariant and Instance Spreading Feature for Softmax Embedding</title><source>IEEE Xplore (Online service)</source><creator>Ye, Mang ; Shen, Jianbing ; Zhang, Xu ; Yuen, Pong C. ; Chang, Shih-Fu</creator><creatorcontrib>Ye, Mang ; Shen, Jianbing ; Zhang, Xu ; Yuen, Pong C. ; Chang, Shih-Fu</creatorcontrib><description>Deep embedding learning plays a key role in learning discriminative feature representations, where the visually similar samples are pulled closer and dissimilar samples are pushed away in the low-dimensional embedding space. This paper studies the unsupervised embedding learning problem by learning such a representation without using any category labels. This task faces two primary challenges: mining reliable positive supervision from highly similar fine-grained classes, and generalizing to unseen testing categories. To approximate the positive concentration and negative separation properties in category-wise supervised learning, we introduce a data augmentation invariant and instance spreading feature using the instance-wise supervision. We also design two novel domain-agnostic augmentation strategies to further extend the supervision in feature space, which simulates the large batch training using a small batch size and the augmented features. To learn such a representation, we propose a novel instance-wise softmax embedding, which directly perform the optimization over the augmented instance features with the binary discrmination softmax encoding. It significantly accelerates the learning speed with much higher accuracy than existing methods, under both seen and unseen testing categories. The unsupervised embedding performs well even without pre-trained network over samples from fine-grained categories. We also develop a variant using category-wise supervision, namely category-wise softmax embedding, which achieves competitive performance over the state-of-of-the-arts, without using any auxiliary information or restrict sample mining.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2020.3013379</identifier><identifier>PMID: 32750841</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Attention ; Categories ; Data augmentation ; Data mining ; Embedding ; embedding learning ; instance feature ; Invariants ; Optimization ; Representations ; softmax embedding ; Supervised learning ; Supervision ; Task analysis ; Testing ; Training ; Unsupervised learning ; Visualization</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2022-02, Vol.44 (2), p.924-939</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-9d39e775f33f3ad7b9e8b251900c428834c528df4f28d324376cd9475d3cd3493</citedby><cites>FETCH-LOGICAL-c351t-9d39e775f33f3ad7b9e8b251900c428834c528df4f28d324376cd9475d3cd3493</cites><orcidid>0000-0003-1444-1205 ; 0000-0002-0834-4102 ; 0000-0003-3989-7655 ; 0000-0003-2656-3082 ; 0000-0002-9343-2202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9154587$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32750841$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Mang</creatorcontrib><creatorcontrib>Shen, Jianbing</creatorcontrib><creatorcontrib>Zhang, Xu</creatorcontrib><creatorcontrib>Yuen, Pong C.</creatorcontrib><creatorcontrib>Chang, Shih-Fu</creatorcontrib><title>Augmentation Invariant and Instance Spreading Feature for Softmax Embedding</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Deep embedding learning plays a key role in learning discriminative feature representations, where the visually similar samples are pulled closer and dissimilar samples are pushed away in the low-dimensional embedding space. This paper studies the unsupervised embedding learning problem by learning such a representation without using any category labels. This task faces two primary challenges: mining reliable positive supervision from highly similar fine-grained classes, and generalizing to unseen testing categories. To approximate the positive concentration and negative separation properties in category-wise supervised learning, we introduce a data augmentation invariant and instance spreading feature using the instance-wise supervision. We also design two novel domain-agnostic augmentation strategies to further extend the supervision in feature space, which simulates the large batch training using a small batch size and the augmented features. To learn such a representation, we propose a novel instance-wise softmax embedding, which directly perform the optimization over the augmented instance features with the binary discrmination softmax encoding. It significantly accelerates the learning speed with much higher accuracy than existing methods, under both seen and unseen testing categories. The unsupervised embedding performs well even without pre-trained network over samples from fine-grained categories. We also develop a variant using category-wise supervision, namely category-wise softmax embedding, which achieves competitive performance over the state-of-of-the-arts, without using any auxiliary information or restrict sample mining.</description><subject>Algorithms</subject><subject>Attention</subject><subject>Categories</subject><subject>Data augmentation</subject><subject>Data mining</subject><subject>Embedding</subject><subject>embedding learning</subject><subject>instance feature</subject><subject>Invariants</subject><subject>Optimization</subject><subject>Representations</subject><subject>softmax embedding</subject><subject>Supervised learning</subject><subject>Supervision</subject><subject>Task analysis</subject><subject>Testing</subject><subject>Training</subject><subject>Unsupervised learning</subject><subject>Visualization</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LxDAQhoMoun78AQUpePHSNckkTXJcFj8WFQX1HLLNVCrbdE1a0X9v1109eJlhmOcdhoeQY0bHjFFz8fw4uZ-NOeV0DJQBKLNFRsyAyUGC2SYjygqea831HtlP6Y1SJiSFXbIHXEmqBRuR20n_2mDoXFe3IZuFDxdrF7rMBT9MqXOhxOxpGdH5OrxmV-i6PmJWtTF7aquucZ_ZZTNHv9oekp3KLRIebfoBebm6fJ7e5HcP17Pp5C4vQbIuNx4MKiUrgAqcV3ODes4lM5SWgmsNopRc-0pUQwUuQBWlN0JJD6UHYeCAnK_vLmP73mPqbFOnEhcLF7Dtkx0itCg4BzagZ__Qt7aPYfjO8oIpYZjidKD4mipjm1LEyi5j3bj4ZRm1K9X2R7VdqbYb1UPodHO6nzfo_yK_bgfgZA3UiPi3NkwKqRV8AxGLgLg</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Ye, Mang</creator><creator>Shen, Jianbing</creator><creator>Zhang, Xu</creator><creator>Yuen, Pong C.</creator><creator>Chang, Shih-Fu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1444-1205</orcidid><orcidid>https://orcid.org/0000-0002-0834-4102</orcidid><orcidid>https://orcid.org/0000-0003-3989-7655</orcidid><orcidid>https://orcid.org/0000-0003-2656-3082</orcidid><orcidid>https://orcid.org/0000-0002-9343-2202</orcidid></search><sort><creationdate>20220201</creationdate><title>Augmentation Invariant and Instance Spreading Feature for Softmax Embedding</title><author>Ye, Mang ; Shen, Jianbing ; Zhang, Xu ; Yuen, Pong C. ; Chang, Shih-Fu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-9d39e775f33f3ad7b9e8b251900c428834c528df4f28d324376cd9475d3cd3493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Attention</topic><topic>Categories</topic><topic>Data augmentation</topic><topic>Data mining</topic><topic>Embedding</topic><topic>embedding learning</topic><topic>instance feature</topic><topic>Invariants</topic><topic>Optimization</topic><topic>Representations</topic><topic>softmax embedding</topic><topic>Supervised learning</topic><topic>Supervision</topic><topic>Task analysis</topic><topic>Testing</topic><topic>Training</topic><topic>Unsupervised learning</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Mang</creatorcontrib><creatorcontrib>Shen, Jianbing</creatorcontrib><creatorcontrib>Zhang, Xu</creatorcontrib><creatorcontrib>Yuen, Pong C.</creatorcontrib><creatorcontrib>Chang, Shih-Fu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Mang</au><au>Shen, Jianbing</au><au>Zhang, Xu</au><au>Yuen, Pong C.</au><au>Chang, Shih-Fu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Augmentation Invariant and Instance Spreading Feature for Softmax Embedding</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>44</volume><issue>2</issue><spage>924</spage><epage>939</epage><pages>924-939</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Deep embedding learning plays a key role in learning discriminative feature representations, where the visually similar samples are pulled closer and dissimilar samples are pushed away in the low-dimensional embedding space. This paper studies the unsupervised embedding learning problem by learning such a representation without using any category labels. This task faces two primary challenges: mining reliable positive supervision from highly similar fine-grained classes, and generalizing to unseen testing categories. To approximate the positive concentration and negative separation properties in category-wise supervised learning, we introduce a data augmentation invariant and instance spreading feature using the instance-wise supervision. We also design two novel domain-agnostic augmentation strategies to further extend the supervision in feature space, which simulates the large batch training using a small batch size and the augmented features. To learn such a representation, we propose a novel instance-wise softmax embedding, which directly perform the optimization over the augmented instance features with the binary discrmination softmax encoding. It significantly accelerates the learning speed with much higher accuracy than existing methods, under both seen and unseen testing categories. The unsupervised embedding performs well even without pre-trained network over samples from fine-grained categories. We also develop a variant using category-wise supervision, namely category-wise softmax embedding, which achieves competitive performance over the state-of-of-the-arts, without using any auxiliary information or restrict sample mining.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>32750841</pmid><doi>10.1109/TPAMI.2020.3013379</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1444-1205</orcidid><orcidid>https://orcid.org/0000-0002-0834-4102</orcidid><orcidid>https://orcid.org/0000-0003-3989-7655</orcidid><orcidid>https://orcid.org/0000-0003-2656-3082</orcidid><orcidid>https://orcid.org/0000-0002-9343-2202</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2022-02, Vol.44 (2), p.924-939 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_proquest_journals_2617491720 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Attention Categories Data augmentation Data mining Embedding embedding learning instance feature Invariants Optimization Representations softmax embedding Supervised learning Supervision Task analysis Testing Training Unsupervised learning Visualization |
title | Augmentation Invariant and Instance Spreading Feature for Softmax Embedding |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A15%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Augmentation%20Invariant%20and%20Instance%20Spreading%20Feature%20for%20Softmax%20Embedding&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Ye,%20Mang&rft.date=2022-02-01&rft.volume=44&rft.issue=2&rft.spage=924&rft.epage=939&rft.pages=924-939&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2020.3013379&rft_dat=%3Cproquest_cross%3E2430662231%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-9d39e775f33f3ad7b9e8b251900c428834c528df4f28d324376cd9475d3cd3493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2617491720&rft_id=info:pmid/32750841&rft_ieee_id=9154587&rfr_iscdi=true |