Loading…
Computational Intelligence-Based Methodology for Antenna Development
The antenna design is a challenging task, which might be time-consuming using conventional computational methods that typically require high computational capability, due to the need for several sweeps and re-running processes. This work proposes an efficient and accurate computational intelligence-...
Saved in:
Published in: | IEEE access 2022, Vol.10, p.1860-1870 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The antenna design is a challenging task, which might be time-consuming using conventional computational methods that typically require high computational capability, due to the need for several sweeps and re-running processes. This work proposes an efficient and accurate computational intelligence-based methodology for the antenna design and optimization. The computational technical solution consists of a surrogate model application, composed of a Multilayer Perceptron (MLP) artificial neural network with backpropagation for the regression process. Combined with the surrogate model, two multiobjective optimization meta-heuristic strategies, Non-dominated Sorting Genetic Algorithm (NSGA-II) and Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D), are used to overcome the mentioned issues from the traditional antenna design method. A study of case considering a dipole antenna for the 3.5 GHz 5G band is reported, as proof of the proposed methodology concept. Comparisons of antenna impedance matching obtained by the proposed methodology, numerical full-wave results from ANSYS HFSS and experimental result from the antenna prototype are performed for demonstrating its applicability and effectiveness for antenna development. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2021.3137198 |