Loading…
Local Surface Plasmonic Resonance, Surface-Enhanced Raman Scattering, Photoluminescence, and Photocatalytic Activity of Hydrothermal Titanate Nanotubes Coated with Ag Nanoparticles
In this work, we successfully fabricated homogeneous hydrothermal titanate nanotubes (TNTs) coated with Ag nanoparticles (NPs) and elucidated the role of Ag NPs on local surface plasmonic resonance, surface-enhanced Raman scattering, and the enhanced photocatalytic activity of TNT/Ag nanocomposite....
Saved in:
Published in: | Journal of nanomaterials 2021-12, Vol.2021, p.1-9 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we successfully fabricated homogeneous hydrothermal titanate nanotubes (TNTs) coated with Ag nanoparticles (NPs) and elucidated the role of Ag NPs on local surface plasmonic resonance, surface-enhanced Raman scattering, and the enhanced photocatalytic activity of TNT/Ag nanocomposite. The results showed that the photodegradation process reached equilibrium in just ~5 min for the TNT/Ag nanocomposite, which was much shorter than that of the TNT sample (~90 min). TEM micrographs showed that Ag NPs were well dispersed on the walls of the nanotubes. XRD patterns and Raman spectra indicated that the TNTs were in the monoclinic structure of H2Ti3O7. Furthermore, Raman active modes of the TNTs were significantly enhanced in the TNT/Ag sample, which was attributed to surface-enhanced Raman spectroscopy. The enhanced photocatalytic activity of the TNT/Ag sample was explained by UV-vis diffuse reflectance spectroscopy and photoluminescence emission spectroscopy, which showed local surface plasmonic resonance-induced visible light absorption enhancement and effective charge separation, respectively. |
---|---|
ISSN: | 1687-4110 1687-4129 |
DOI: | 10.1155/2021/3806691 |