Loading…

Intelligent Prediction Method of Building Energy Consumption Based on Deep Learning

Building energy consumption prediction plays an important role in realizing building energy conservation control. Limited by some external factors such as temperature, there are some problems in practical applications, such as complex operation and low prediction accuracy. Aiming at the problem of l...

Full description

Saved in:
Bibliographic Details
Published in:Scientific programming 2021-12, Vol.2021, p.1-9
Main Authors: Fan, Bingqian, Xing, Xuanxuan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Building energy consumption prediction plays an important role in realizing building energy conservation control. Limited by some external factors such as temperature, there are some problems in practical applications, such as complex operation and low prediction accuracy. Aiming at the problem of low prediction accuracy caused by poor timing of existing building energy consumption prediction methods, a building energy consumption prediction and analysis method based on the deep learning network is proposed in this paper. Before establishing the energy consumption prediction model, the building energy consumption data source is preprocessed and analyzed. Then, based on the Keras deep learning framework, an improved long short-term memory (ILSTM) prediction model is built to support the accurate analysis of the whole cycle of the prediction network. At the same time, the adaptive moment (Adam) estimation algorithm is used to update and optimize the weight parameters of the model to realize the adaptive and rapid update and matching of network parameters. The simulation experiment is based on the actual dataset collected by a university in Southwest China. The experimental results show that the evaluation indexes MAE and RMSE of the proposed method are 0.015 and 0.109, respectively, which are better than the comparison method. The simulation experiment proves that the proposed method is feasible.
ISSN:1058-9244
1875-919X
DOI:10.1155/2021/3323316