Loading…
Graphene aerogel induced by ethanol-assisted method for excellent electromagnetic wave absorption
Graphene aerogels with three-dimensional network structure exhibit excellent electromagnetic (EM) wave attenuation capacity and are often designed as EM-absorbing materials. However, the fabrication processes of these materials are generally sophisticated and time-consuming. Herein, a series of grap...
Saved in:
Published in: | Journal of materials science 2022, Vol.57 (1), p.453-466 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Graphene aerogels with three-dimensional network structure exhibit excellent electromagnetic (EM) wave attenuation capacity and are often designed as EM-absorbing materials. However, the fabrication processes of these materials are generally sophisticated and time-consuming. Herein, a series of graphene aerogels are synthesized successfully through a simple modified hydrothermal method using ethanol and water as the solvent. The effects of the volume ratio of ethanol-to-water (EtOH/H
2
O) on the chemical compositions, microstructures, and EM absorption properties of the aerogels are investigated. Results demonstrate that the microstructure and EM-absorbing ability are strongly dependent on the volume ratio of EtOH/H
2
O, and the best performance is obtained with EtOH/H
2
O of 1:1. Owing to the optimized ratio, the aerogel with 4.1 mg/ml exhibits a remarkable minimum reflection loss of − 52.6 dB and a broad efficient absorption bandwidth of 7.65 GHz under an ultralow filler content (3 wt%), showing obvious advantages compared with most graphene-based absorbers. This work reveals that the graphene aerogel prepared through this ethanol-assisted hydrothermal protocol is a promising candidate for lightweight and economical EM absorption material. |
---|---|
ISSN: | 0022-2461 1573-4803 |
DOI: | 10.1007/s10853-021-06461-5 |