Loading…
Travel Time Prediction and Explanation with Spatio-Temporal Features: A Comparative Study
Travel time information is used as input or auxiliary data for tasks such as dynamic navigation, infrastructure planning, congestion control, and accident detection. Various data-driven Travel Time Prediction (TTP) methods have been proposed in recent years. One of the most challenging tasks in TTP...
Saved in:
Published in: | Electronics (Basel) 2022-01, Vol.11 (1), p.106 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c322t-a9ad47d7c97401915e82df8d61c17a12138504089e7b5b43260a348e7ac2caa03 |
---|---|
cites | cdi_FETCH-LOGICAL-c322t-a9ad47d7c97401915e82df8d61c17a12138504089e7b5b43260a348e7ac2caa03 |
container_end_page | |
container_issue | 1 |
container_start_page | 106 |
container_title | Electronics (Basel) |
container_volume | 11 |
creator | Ahmed, Irfan Kumara, Indika Reshadat, Vahideh Kayes, A. S. M. van den Heuvel, Willem-Jan Tamburri, Damian A. |
description | Travel time information is used as input or auxiliary data for tasks such as dynamic navigation, infrastructure planning, congestion control, and accident detection. Various data-driven Travel Time Prediction (TTP) methods have been proposed in recent years. One of the most challenging tasks in TTP is developing and selecting the most appropriate prediction algorithm. The existing studies that empirically compare different TTP models only use a few models with specific features. Moreover, there is a lack of research on explaining TTPs made by black-box models. Such explanations can help to tune and apply TTP methods successfully. To fill these gaps in the current TTP literature, using three data sets, we compare three types of TTP methods (ensemble tree-based learning, deep neural networks, and hybrid models) and ten different prediction algorithms overall. Furthermore, we apply XAI (Explainable Artificial Intelligence) methods (SHAP and LIME) to understand and interpret models’ predictions. The prediction accuracy and reliability for all models are evaluated and compared. We observed that the ensemble learning methods, i.e., XGBoost and LightGBM, are the best performing models over the three data sets, and XAI methods can adequately explain how various spatial and temporal features influence travel time. |
doi_str_mv | 10.3390/electronics11010106 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2618212641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618212641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-a9ad47d7c97401915e82df8d61c17a12138504089e7b5b43260a348e7ac2caa03</originalsourceid><addsrcrecordid>eNptUE1Lw0AQXUTBUvsLvCx4ju5Hms16K6VVoaDQePAUprtTTEmycXdT7b83tR48OHOY95jHzOMRcs3ZrZSa3WGNJnrXViZwzo6dnZGRYEonWmhx_gdfkkkIOzaU5jKXbETeCg97rGlRNUhfPNrKxMq1FFpLF19dDS388M8qvtN1dyRJgU3nPNR0iRB7j-GezujcNR34Yb9Huo69PVyRiy3UASe_c0xel4ti_pisnh-e5rNVYqQQMQENNlVWGa1SxjWfYi7sNrcZN1wBF4PPKUtZrlFtpptUioyBTHNUYIQBYHJMbk53O-8-egyx3Lnet8PLUmQ8F1xkKR9U8qQy3oXgcVt2vmrAH0rOymOM5T8xym_R_Gg4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618212641</pqid></control><display><type>article</type><title>Travel Time Prediction and Explanation with Spatio-Temporal Features: A Comparative Study</title><source>Publicly Available Content Database</source><creator>Ahmed, Irfan ; Kumara, Indika ; Reshadat, Vahideh ; Kayes, A. S. M. ; van den Heuvel, Willem-Jan ; Tamburri, Damian A.</creator><creatorcontrib>Ahmed, Irfan ; Kumara, Indika ; Reshadat, Vahideh ; Kayes, A. S. M. ; van den Heuvel, Willem-Jan ; Tamburri, Damian A.</creatorcontrib><description>Travel time information is used as input or auxiliary data for tasks such as dynamic navigation, infrastructure planning, congestion control, and accident detection. Various data-driven Travel Time Prediction (TTP) methods have been proposed in recent years. One of the most challenging tasks in TTP is developing and selecting the most appropriate prediction algorithm. The existing studies that empirically compare different TTP models only use a few models with specific features. Moreover, there is a lack of research on explaining TTPs made by black-box models. Such explanations can help to tune and apply TTP methods successfully. To fill these gaps in the current TTP literature, using three data sets, we compare three types of TTP methods (ensemble tree-based learning, deep neural networks, and hybrid models) and ten different prediction algorithms overall. Furthermore, we apply XAI (Explainable Artificial Intelligence) methods (SHAP and LIME) to understand and interpret models’ predictions. The prediction accuracy and reliability for all models are evaluated and compared. We observed that the ensemble learning methods, i.e., XGBoost and LightGBM, are the best performing models over the three data sets, and XAI methods can adequately explain how various spatial and temporal features influence travel time.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11010106</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accident detection ; Algorithms ; Artificial intelligence ; Artificial neural networks ; Comparative studies ; Datasets ; Explainable artificial intelligence ; Logistics ; Machine learning ; Mathematical models ; Neural networks ; Reliability analysis ; Software ; Travel time</subject><ispartof>Electronics (Basel), 2022-01, Vol.11 (1), p.106</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-a9ad47d7c97401915e82df8d61c17a12138504089e7b5b43260a348e7ac2caa03</citedby><cites>FETCH-LOGICAL-c322t-a9ad47d7c97401915e82df8d61c17a12138504089e7b5b43260a348e7ac2caa03</cites><orcidid>0000-0003-4355-0494 ; 0000-0002-2421-2214</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2618212641/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2618212641?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Ahmed, Irfan</creatorcontrib><creatorcontrib>Kumara, Indika</creatorcontrib><creatorcontrib>Reshadat, Vahideh</creatorcontrib><creatorcontrib>Kayes, A. S. M.</creatorcontrib><creatorcontrib>van den Heuvel, Willem-Jan</creatorcontrib><creatorcontrib>Tamburri, Damian A.</creatorcontrib><title>Travel Time Prediction and Explanation with Spatio-Temporal Features: A Comparative Study</title><title>Electronics (Basel)</title><description>Travel time information is used as input or auxiliary data for tasks such as dynamic navigation, infrastructure planning, congestion control, and accident detection. Various data-driven Travel Time Prediction (TTP) methods have been proposed in recent years. One of the most challenging tasks in TTP is developing and selecting the most appropriate prediction algorithm. The existing studies that empirically compare different TTP models only use a few models with specific features. Moreover, there is a lack of research on explaining TTPs made by black-box models. Such explanations can help to tune and apply TTP methods successfully. To fill these gaps in the current TTP literature, using three data sets, we compare three types of TTP methods (ensemble tree-based learning, deep neural networks, and hybrid models) and ten different prediction algorithms overall. Furthermore, we apply XAI (Explainable Artificial Intelligence) methods (SHAP and LIME) to understand and interpret models’ predictions. The prediction accuracy and reliability for all models are evaluated and compared. We observed that the ensemble learning methods, i.e., XGBoost and LightGBM, are the best performing models over the three data sets, and XAI methods can adequately explain how various spatial and temporal features influence travel time.</description><subject>Accident detection</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Comparative studies</subject><subject>Datasets</subject><subject>Explainable artificial intelligence</subject><subject>Logistics</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Reliability analysis</subject><subject>Software</subject><subject>Travel time</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptUE1Lw0AQXUTBUvsLvCx4ju5Hms16K6VVoaDQePAUprtTTEmycXdT7b83tR48OHOY95jHzOMRcs3ZrZSa3WGNJnrXViZwzo6dnZGRYEonWmhx_gdfkkkIOzaU5jKXbETeCg97rGlRNUhfPNrKxMq1FFpLF19dDS388M8qvtN1dyRJgU3nPNR0iRB7j-GezujcNR34Yb9Huo69PVyRiy3UASe_c0xel4ti_pisnh-e5rNVYqQQMQENNlVWGa1SxjWfYi7sNrcZN1wBF4PPKUtZrlFtpptUioyBTHNUYIQBYHJMbk53O-8-egyx3Lnet8PLUmQ8F1xkKR9U8qQy3oXgcVt2vmrAH0rOymOM5T8xym_R_Gg4</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Ahmed, Irfan</creator><creator>Kumara, Indika</creator><creator>Reshadat, Vahideh</creator><creator>Kayes, A. S. M.</creator><creator>van den Heuvel, Willem-Jan</creator><creator>Tamburri, Damian A.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-4355-0494</orcidid><orcidid>https://orcid.org/0000-0002-2421-2214</orcidid></search><sort><creationdate>20220101</creationdate><title>Travel Time Prediction and Explanation with Spatio-Temporal Features: A Comparative Study</title><author>Ahmed, Irfan ; Kumara, Indika ; Reshadat, Vahideh ; Kayes, A. S. M. ; van den Heuvel, Willem-Jan ; Tamburri, Damian A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-a9ad47d7c97401915e82df8d61c17a12138504089e7b5b43260a348e7ac2caa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accident detection</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Comparative studies</topic><topic>Datasets</topic><topic>Explainable artificial intelligence</topic><topic>Logistics</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Reliability analysis</topic><topic>Software</topic><topic>Travel time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Irfan</creatorcontrib><creatorcontrib>Kumara, Indika</creatorcontrib><creatorcontrib>Reshadat, Vahideh</creatorcontrib><creatorcontrib>Kayes, A. S. M.</creatorcontrib><creatorcontrib>van den Heuvel, Willem-Jan</creatorcontrib><creatorcontrib>Tamburri, Damian A.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Irfan</au><au>Kumara, Indika</au><au>Reshadat, Vahideh</au><au>Kayes, A. S. M.</au><au>van den Heuvel, Willem-Jan</au><au>Tamburri, Damian A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Travel Time Prediction and Explanation with Spatio-Temporal Features: A Comparative Study</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>11</volume><issue>1</issue><spage>106</spage><pages>106-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Travel time information is used as input or auxiliary data for tasks such as dynamic navigation, infrastructure planning, congestion control, and accident detection. Various data-driven Travel Time Prediction (TTP) methods have been proposed in recent years. One of the most challenging tasks in TTP is developing and selecting the most appropriate prediction algorithm. The existing studies that empirically compare different TTP models only use a few models with specific features. Moreover, there is a lack of research on explaining TTPs made by black-box models. Such explanations can help to tune and apply TTP methods successfully. To fill these gaps in the current TTP literature, using three data sets, we compare three types of TTP methods (ensemble tree-based learning, deep neural networks, and hybrid models) and ten different prediction algorithms overall. Furthermore, we apply XAI (Explainable Artificial Intelligence) methods (SHAP and LIME) to understand and interpret models’ predictions. The prediction accuracy and reliability for all models are evaluated and compared. We observed that the ensemble learning methods, i.e., XGBoost and LightGBM, are the best performing models over the three data sets, and XAI methods can adequately explain how various spatial and temporal features influence travel time.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11010106</doi><orcidid>https://orcid.org/0000-0003-4355-0494</orcidid><orcidid>https://orcid.org/0000-0002-2421-2214</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2022-01, Vol.11 (1), p.106 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2618212641 |
source | Publicly Available Content Database |
subjects | Accident detection Algorithms Artificial intelligence Artificial neural networks Comparative studies Datasets Explainable artificial intelligence Logistics Machine learning Mathematical models Neural networks Reliability analysis Software Travel time |
title | Travel Time Prediction and Explanation with Spatio-Temporal Features: A Comparative Study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Travel%20Time%20Prediction%20and%20Explanation%20with%20Spatio-Temporal%20Features:%20A%20Comparative%20Study&rft.jtitle=Electronics%20(Basel)&rft.au=Ahmed,%20Irfan&rft.date=2022-01-01&rft.volume=11&rft.issue=1&rft.spage=106&rft.pages=106-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11010106&rft_dat=%3Cproquest_cross%3E2618212641%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-a9ad47d7c97401915e82df8d61c17a12138504089e7b5b43260a348e7ac2caa03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2618212641&rft_id=info:pmid/&rfr_iscdi=true |