Loading…

Travel Time Prediction and Explanation with Spatio-Temporal Features: A Comparative Study

Travel time information is used as input or auxiliary data for tasks such as dynamic navigation, infrastructure planning, congestion control, and accident detection. Various data-driven Travel Time Prediction (TTP) methods have been proposed in recent years. One of the most challenging tasks in TTP...

Full description

Saved in:
Bibliographic Details
Published in:Electronics (Basel) 2022-01, Vol.11 (1), p.106
Main Authors: Ahmed, Irfan, Kumara, Indika, Reshadat, Vahideh, Kayes, A. S. M., van den Heuvel, Willem-Jan, Tamburri, Damian A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c322t-a9ad47d7c97401915e82df8d61c17a12138504089e7b5b43260a348e7ac2caa03
cites cdi_FETCH-LOGICAL-c322t-a9ad47d7c97401915e82df8d61c17a12138504089e7b5b43260a348e7ac2caa03
container_end_page
container_issue 1
container_start_page 106
container_title Electronics (Basel)
container_volume 11
creator Ahmed, Irfan
Kumara, Indika
Reshadat, Vahideh
Kayes, A. S. M.
van den Heuvel, Willem-Jan
Tamburri, Damian A.
description Travel time information is used as input or auxiliary data for tasks such as dynamic navigation, infrastructure planning, congestion control, and accident detection. Various data-driven Travel Time Prediction (TTP) methods have been proposed in recent years. One of the most challenging tasks in TTP is developing and selecting the most appropriate prediction algorithm. The existing studies that empirically compare different TTP models only use a few models with specific features. Moreover, there is a lack of research on explaining TTPs made by black-box models. Such explanations can help to tune and apply TTP methods successfully. To fill these gaps in the current TTP literature, using three data sets, we compare three types of TTP methods (ensemble tree-based learning, deep neural networks, and hybrid models) and ten different prediction algorithms overall. Furthermore, we apply XAI (Explainable Artificial Intelligence) methods (SHAP and LIME) to understand and interpret models’ predictions. The prediction accuracy and reliability for all models are evaluated and compared. We observed that the ensemble learning methods, i.e., XGBoost and LightGBM, are the best performing models over the three data sets, and XAI methods can adequately explain how various spatial and temporal features influence travel time.
doi_str_mv 10.3390/electronics11010106
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2618212641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618212641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-a9ad47d7c97401915e82df8d61c17a12138504089e7b5b43260a348e7ac2caa03</originalsourceid><addsrcrecordid>eNptUE1Lw0AQXUTBUvsLvCx4ju5Hms16K6VVoaDQePAUprtTTEmycXdT7b83tR48OHOY95jHzOMRcs3ZrZSa3WGNJnrXViZwzo6dnZGRYEonWmhx_gdfkkkIOzaU5jKXbETeCg97rGlRNUhfPNrKxMq1FFpLF19dDS388M8qvtN1dyRJgU3nPNR0iRB7j-GezujcNR34Yb9Huo69PVyRiy3UASe_c0xel4ti_pisnh-e5rNVYqQQMQENNlVWGa1SxjWfYi7sNrcZN1wBF4PPKUtZrlFtpptUioyBTHNUYIQBYHJMbk53O-8-egyx3Lnet8PLUmQ8F1xkKR9U8qQy3oXgcVt2vmrAH0rOymOM5T8xym_R_Gg4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618212641</pqid></control><display><type>article</type><title>Travel Time Prediction and Explanation with Spatio-Temporal Features: A Comparative Study</title><source>Publicly Available Content Database</source><creator>Ahmed, Irfan ; Kumara, Indika ; Reshadat, Vahideh ; Kayes, A. S. M. ; van den Heuvel, Willem-Jan ; Tamburri, Damian A.</creator><creatorcontrib>Ahmed, Irfan ; Kumara, Indika ; Reshadat, Vahideh ; Kayes, A. S. M. ; van den Heuvel, Willem-Jan ; Tamburri, Damian A.</creatorcontrib><description>Travel time information is used as input or auxiliary data for tasks such as dynamic navigation, infrastructure planning, congestion control, and accident detection. Various data-driven Travel Time Prediction (TTP) methods have been proposed in recent years. One of the most challenging tasks in TTP is developing and selecting the most appropriate prediction algorithm. The existing studies that empirically compare different TTP models only use a few models with specific features. Moreover, there is a lack of research on explaining TTPs made by black-box models. Such explanations can help to tune and apply TTP methods successfully. To fill these gaps in the current TTP literature, using three data sets, we compare three types of TTP methods (ensemble tree-based learning, deep neural networks, and hybrid models) and ten different prediction algorithms overall. Furthermore, we apply XAI (Explainable Artificial Intelligence) methods (SHAP and LIME) to understand and interpret models’ predictions. The prediction accuracy and reliability for all models are evaluated and compared. We observed that the ensemble learning methods, i.e., XGBoost and LightGBM, are the best performing models over the three data sets, and XAI methods can adequately explain how various spatial and temporal features influence travel time.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11010106</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accident detection ; Algorithms ; Artificial intelligence ; Artificial neural networks ; Comparative studies ; Datasets ; Explainable artificial intelligence ; Logistics ; Machine learning ; Mathematical models ; Neural networks ; Reliability analysis ; Software ; Travel time</subject><ispartof>Electronics (Basel), 2022-01, Vol.11 (1), p.106</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-a9ad47d7c97401915e82df8d61c17a12138504089e7b5b43260a348e7ac2caa03</citedby><cites>FETCH-LOGICAL-c322t-a9ad47d7c97401915e82df8d61c17a12138504089e7b5b43260a348e7ac2caa03</cites><orcidid>0000-0003-4355-0494 ; 0000-0002-2421-2214</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2618212641/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2618212641?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Ahmed, Irfan</creatorcontrib><creatorcontrib>Kumara, Indika</creatorcontrib><creatorcontrib>Reshadat, Vahideh</creatorcontrib><creatorcontrib>Kayes, A. S. M.</creatorcontrib><creatorcontrib>van den Heuvel, Willem-Jan</creatorcontrib><creatorcontrib>Tamburri, Damian A.</creatorcontrib><title>Travel Time Prediction and Explanation with Spatio-Temporal Features: A Comparative Study</title><title>Electronics (Basel)</title><description>Travel time information is used as input or auxiliary data for tasks such as dynamic navigation, infrastructure planning, congestion control, and accident detection. Various data-driven Travel Time Prediction (TTP) methods have been proposed in recent years. One of the most challenging tasks in TTP is developing and selecting the most appropriate prediction algorithm. The existing studies that empirically compare different TTP models only use a few models with specific features. Moreover, there is a lack of research on explaining TTPs made by black-box models. Such explanations can help to tune and apply TTP methods successfully. To fill these gaps in the current TTP literature, using three data sets, we compare three types of TTP methods (ensemble tree-based learning, deep neural networks, and hybrid models) and ten different prediction algorithms overall. Furthermore, we apply XAI (Explainable Artificial Intelligence) methods (SHAP and LIME) to understand and interpret models’ predictions. The prediction accuracy and reliability for all models are evaluated and compared. We observed that the ensemble learning methods, i.e., XGBoost and LightGBM, are the best performing models over the three data sets, and XAI methods can adequately explain how various spatial and temporal features influence travel time.</description><subject>Accident detection</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Comparative studies</subject><subject>Datasets</subject><subject>Explainable artificial intelligence</subject><subject>Logistics</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Reliability analysis</subject><subject>Software</subject><subject>Travel time</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNptUE1Lw0AQXUTBUvsLvCx4ju5Hms16K6VVoaDQePAUprtTTEmycXdT7b83tR48OHOY95jHzOMRcs3ZrZSa3WGNJnrXViZwzo6dnZGRYEonWmhx_gdfkkkIOzaU5jKXbETeCg97rGlRNUhfPNrKxMq1FFpLF19dDS388M8qvtN1dyRJgU3nPNR0iRB7j-GezujcNR34Yb9Huo69PVyRiy3UASe_c0xel4ti_pisnh-e5rNVYqQQMQENNlVWGa1SxjWfYi7sNrcZN1wBF4PPKUtZrlFtpptUioyBTHNUYIQBYHJMbk53O-8-egyx3Lnet8PLUmQ8F1xkKR9U8qQy3oXgcVt2vmrAH0rOymOM5T8xym_R_Gg4</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Ahmed, Irfan</creator><creator>Kumara, Indika</creator><creator>Reshadat, Vahideh</creator><creator>Kayes, A. S. M.</creator><creator>van den Heuvel, Willem-Jan</creator><creator>Tamburri, Damian A.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-4355-0494</orcidid><orcidid>https://orcid.org/0000-0002-2421-2214</orcidid></search><sort><creationdate>20220101</creationdate><title>Travel Time Prediction and Explanation with Spatio-Temporal Features: A Comparative Study</title><author>Ahmed, Irfan ; Kumara, Indika ; Reshadat, Vahideh ; Kayes, A. S. M. ; van den Heuvel, Willem-Jan ; Tamburri, Damian A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-a9ad47d7c97401915e82df8d61c17a12138504089e7b5b43260a348e7ac2caa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accident detection</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Comparative studies</topic><topic>Datasets</topic><topic>Explainable artificial intelligence</topic><topic>Logistics</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Reliability analysis</topic><topic>Software</topic><topic>Travel time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Irfan</creatorcontrib><creatorcontrib>Kumara, Indika</creatorcontrib><creatorcontrib>Reshadat, Vahideh</creatorcontrib><creatorcontrib>Kayes, A. S. M.</creatorcontrib><creatorcontrib>van den Heuvel, Willem-Jan</creatorcontrib><creatorcontrib>Tamburri, Damian A.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Irfan</au><au>Kumara, Indika</au><au>Reshadat, Vahideh</au><au>Kayes, A. S. M.</au><au>van den Heuvel, Willem-Jan</au><au>Tamburri, Damian A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Travel Time Prediction and Explanation with Spatio-Temporal Features: A Comparative Study</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>11</volume><issue>1</issue><spage>106</spage><pages>106-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Travel time information is used as input or auxiliary data for tasks such as dynamic navigation, infrastructure planning, congestion control, and accident detection. Various data-driven Travel Time Prediction (TTP) methods have been proposed in recent years. One of the most challenging tasks in TTP is developing and selecting the most appropriate prediction algorithm. The existing studies that empirically compare different TTP models only use a few models with specific features. Moreover, there is a lack of research on explaining TTPs made by black-box models. Such explanations can help to tune and apply TTP methods successfully. To fill these gaps in the current TTP literature, using three data sets, we compare three types of TTP methods (ensemble tree-based learning, deep neural networks, and hybrid models) and ten different prediction algorithms overall. Furthermore, we apply XAI (Explainable Artificial Intelligence) methods (SHAP and LIME) to understand and interpret models’ predictions. The prediction accuracy and reliability for all models are evaluated and compared. We observed that the ensemble learning methods, i.e., XGBoost and LightGBM, are the best performing models over the three data sets, and XAI methods can adequately explain how various spatial and temporal features influence travel time.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11010106</doi><orcidid>https://orcid.org/0000-0003-4355-0494</orcidid><orcidid>https://orcid.org/0000-0002-2421-2214</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2022-01, Vol.11 (1), p.106
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2618212641
source Publicly Available Content Database
subjects Accident detection
Algorithms
Artificial intelligence
Artificial neural networks
Comparative studies
Datasets
Explainable artificial intelligence
Logistics
Machine learning
Mathematical models
Neural networks
Reliability analysis
Software
Travel time
title Travel Time Prediction and Explanation with Spatio-Temporal Features: A Comparative Study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T02%3A42%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Travel%20Time%20Prediction%20and%20Explanation%20with%20Spatio-Temporal%20Features:%20A%20Comparative%20Study&rft.jtitle=Electronics%20(Basel)&rft.au=Ahmed,%20Irfan&rft.date=2022-01-01&rft.volume=11&rft.issue=1&rft.spage=106&rft.pages=106-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11010106&rft_dat=%3Cproquest_cross%3E2618212641%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c322t-a9ad47d7c97401915e82df8d61c17a12138504089e7b5b43260a348e7ac2caa03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2618212641&rft_id=info:pmid/&rfr_iscdi=true