Loading…
Origin of the large entropy change in the molecular caloric and ferroelectric ammonium sulfate
The deceptively simple inorganic salt ammonium sulfate undergoes a ferroelectric phase transition associated with a very large entropy change and both electrocaloric and barocaloric functionality. While the structural origins of the electrical polarisation are now well established, those of the entr...
Saved in:
Published in: | arXiv.org 2022-08 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Meijer, Bernet E Yuan, Shurong Cai, Guanqun Dixey, Richard J Demmel, Franz Dove, Martin T Liu, Jiaxun Playford, Helen Y Walker, Helen C Phillips, Anthony E |
description | The deceptively simple inorganic salt ammonium sulfate undergoes a ferroelectric phase transition associated with a very large entropy change and both electrocaloric and barocaloric functionality. While the structural origins of the electrical polarisation are now well established, those of the entropy change have been controversial for over fifty years. This question is resolved here using a combination of DFT phonon calculations with inelastic neutron scattering under variable temperature and pressure, supported by complementary total and quasielastic neutron scattering experiments. A simple model of the entropy in which each molecular ion is disordered across the mirror plane in the high symmetry phase, although widely used in the literature, proves to be untenable. Instead, the entropy arises from low-frequency librations of ammonium ions in this phase, with harmonic terms that are very small or even negative. These results suggest that, in the search for molecular materials with functionality derived from large entropy changes, vibrational entropy arising from broad energy minima is likely to be just as important as configurational entropy arising from crystallographic disorder. |
doi_str_mv | 10.48550/arxiv.2201.02548 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2618382171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618382171</sourcerecordid><originalsourceid>FETCH-LOGICAL-a958-86acfe47a4d767d5f64e4b904c1de3911e6030644e4656d7dbec41a7c2ed1a673</originalsourceid><addsrcrecordid>eNotjU1LAzEYhIMgWGp_gLeA5635TvYoxS8o9NKz5W3ybrtlN6nZXdF_b7SehplnmCHkjrOlclqzB8hf7edSCMaXTGjlrshMSMkrp4S4IYthODHGhLFCazkj75vcHtpIU0PHI9IO8gEpxjGn8zf1R4jFFvzL-tShn0qDeuhSbj2FGGiDOScsZPxL-j7FdurpMHUNjHhLrhvoBlz865xsn5-2q9dqvXl5Wz2uK6i1q5wB36CyoII1NujGKFT7minPA8qaczRMMqNKarQJNuzRKw7WCwwcjJVzcn-ZPef0MeEw7k5pyrE87oThTjrBLZc_hiBWOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618382171</pqid></control><display><type>article</type><title>Origin of the large entropy change in the molecular caloric and ferroelectric ammonium sulfate</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Meijer, Bernet E ; Yuan, Shurong ; Cai, Guanqun ; Dixey, Richard J ; Demmel, Franz ; Dove, Martin T ; Liu, Jiaxun ; Playford, Helen Y ; Walker, Helen C ; Phillips, Anthony E</creator><creatorcontrib>Meijer, Bernet E ; Yuan, Shurong ; Cai, Guanqun ; Dixey, Richard J ; Demmel, Franz ; Dove, Martin T ; Liu, Jiaxun ; Playford, Helen Y ; Walker, Helen C ; Phillips, Anthony E</creatorcontrib><description>The deceptively simple inorganic salt ammonium sulfate undergoes a ferroelectric phase transition associated with a very large entropy change and both electrocaloric and barocaloric functionality. While the structural origins of the electrical polarisation are now well established, those of the entropy change have been controversial for over fifty years. This question is resolved here using a combination of DFT phonon calculations with inelastic neutron scattering under variable temperature and pressure, supported by complementary total and quasielastic neutron scattering experiments. A simple model of the entropy in which each molecular ion is disordered across the mirror plane in the high symmetry phase, although widely used in the literature, proves to be untenable. Instead, the entropy arises from low-frequency librations of ammonium ions in this phase, with harmonic terms that are very small or even negative. These results suggest that, in the search for molecular materials with functionality derived from large entropy changes, vibrational entropy arising from broad energy minima is likely to be just as important as configurational entropy arising from crystallographic disorder.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2201.02548</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Ammonium sulfate ; Anharmonicity ; Crystallography ; Entropy ; Ferroelectric materials ; Ferroelectricity ; Inelastic scattering ; Inorganic salts ; Libration ; Molecular ions ; Neutron scattering ; Neutrons ; Phase transitions</subject><ispartof>arXiv.org, 2022-08</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2618382171?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,27923,37010,44588</link.rule.ids></links><search><creatorcontrib>Meijer, Bernet E</creatorcontrib><creatorcontrib>Yuan, Shurong</creatorcontrib><creatorcontrib>Cai, Guanqun</creatorcontrib><creatorcontrib>Dixey, Richard J</creatorcontrib><creatorcontrib>Demmel, Franz</creatorcontrib><creatorcontrib>Dove, Martin T</creatorcontrib><creatorcontrib>Liu, Jiaxun</creatorcontrib><creatorcontrib>Playford, Helen Y</creatorcontrib><creatorcontrib>Walker, Helen C</creatorcontrib><creatorcontrib>Phillips, Anthony E</creatorcontrib><title>Origin of the large entropy change in the molecular caloric and ferroelectric ammonium sulfate</title><title>arXiv.org</title><description>The deceptively simple inorganic salt ammonium sulfate undergoes a ferroelectric phase transition associated with a very large entropy change and both electrocaloric and barocaloric functionality. While the structural origins of the electrical polarisation are now well established, those of the entropy change have been controversial for over fifty years. This question is resolved here using a combination of DFT phonon calculations with inelastic neutron scattering under variable temperature and pressure, supported by complementary total and quasielastic neutron scattering experiments. A simple model of the entropy in which each molecular ion is disordered across the mirror plane in the high symmetry phase, although widely used in the literature, proves to be untenable. Instead, the entropy arises from low-frequency librations of ammonium ions in this phase, with harmonic terms that are very small or even negative. These results suggest that, in the search for molecular materials with functionality derived from large entropy changes, vibrational entropy arising from broad energy minima is likely to be just as important as configurational entropy arising from crystallographic disorder.</description><subject>Ammonium sulfate</subject><subject>Anharmonicity</subject><subject>Crystallography</subject><subject>Entropy</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Inelastic scattering</subject><subject>Inorganic salts</subject><subject>Libration</subject><subject>Molecular ions</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>Phase transitions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU1LAzEYhIMgWGp_gLeA5635TvYoxS8o9NKz5W3ybrtlN6nZXdF_b7SehplnmCHkjrOlclqzB8hf7edSCMaXTGjlrshMSMkrp4S4IYthODHGhLFCazkj75vcHtpIU0PHI9IO8gEpxjGn8zf1R4jFFvzL-tShn0qDeuhSbj2FGGiDOScsZPxL-j7FdurpMHUNjHhLrhvoBlz865xsn5-2q9dqvXl5Wz2uK6i1q5wB36CyoII1NujGKFT7minPA8qaczRMMqNKarQJNuzRKw7WCwwcjJVzcn-ZPef0MeEw7k5pyrE87oThTjrBLZc_hiBWOQ</recordid><startdate>20220805</startdate><enddate>20220805</enddate><creator>Meijer, Bernet E</creator><creator>Yuan, Shurong</creator><creator>Cai, Guanqun</creator><creator>Dixey, Richard J</creator><creator>Demmel, Franz</creator><creator>Dove, Martin T</creator><creator>Liu, Jiaxun</creator><creator>Playford, Helen Y</creator><creator>Walker, Helen C</creator><creator>Phillips, Anthony E</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220805</creationdate><title>Origin of the large entropy change in the molecular caloric and ferroelectric ammonium sulfate</title><author>Meijer, Bernet E ; Yuan, Shurong ; Cai, Guanqun ; Dixey, Richard J ; Demmel, Franz ; Dove, Martin T ; Liu, Jiaxun ; Playford, Helen Y ; Walker, Helen C ; Phillips, Anthony E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a958-86acfe47a4d767d5f64e4b904c1de3911e6030644e4656d7dbec41a7c2ed1a673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ammonium sulfate</topic><topic>Anharmonicity</topic><topic>Crystallography</topic><topic>Entropy</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Inelastic scattering</topic><topic>Inorganic salts</topic><topic>Libration</topic><topic>Molecular ions</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>Phase transitions</topic><toplevel>online_resources</toplevel><creatorcontrib>Meijer, Bernet E</creatorcontrib><creatorcontrib>Yuan, Shurong</creatorcontrib><creatorcontrib>Cai, Guanqun</creatorcontrib><creatorcontrib>Dixey, Richard J</creatorcontrib><creatorcontrib>Demmel, Franz</creatorcontrib><creatorcontrib>Dove, Martin T</creatorcontrib><creatorcontrib>Liu, Jiaxun</creatorcontrib><creatorcontrib>Playford, Helen Y</creatorcontrib><creatorcontrib>Walker, Helen C</creatorcontrib><creatorcontrib>Phillips, Anthony E</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meijer, Bernet E</au><au>Yuan, Shurong</au><au>Cai, Guanqun</au><au>Dixey, Richard J</au><au>Demmel, Franz</au><au>Dove, Martin T</au><au>Liu, Jiaxun</au><au>Playford, Helen Y</au><au>Walker, Helen C</au><au>Phillips, Anthony E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin of the large entropy change in the molecular caloric and ferroelectric ammonium sulfate</atitle><jtitle>arXiv.org</jtitle><date>2022-08-05</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The deceptively simple inorganic salt ammonium sulfate undergoes a ferroelectric phase transition associated with a very large entropy change and both electrocaloric and barocaloric functionality. While the structural origins of the electrical polarisation are now well established, those of the entropy change have been controversial for over fifty years. This question is resolved here using a combination of DFT phonon calculations with inelastic neutron scattering under variable temperature and pressure, supported by complementary total and quasielastic neutron scattering experiments. A simple model of the entropy in which each molecular ion is disordered across the mirror plane in the high symmetry phase, although widely used in the literature, proves to be untenable. Instead, the entropy arises from low-frequency librations of ammonium ions in this phase, with harmonic terms that are very small or even negative. These results suggest that, in the search for molecular materials with functionality derived from large entropy changes, vibrational entropy arising from broad energy minima is likely to be just as important as configurational entropy arising from crystallographic disorder.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2201.02548</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2618382171 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Ammonium sulfate Anharmonicity Crystallography Entropy Ferroelectric materials Ferroelectricity Inelastic scattering Inorganic salts Libration Molecular ions Neutron scattering Neutrons Phase transitions |
title | Origin of the large entropy change in the molecular caloric and ferroelectric ammonium sulfate |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A12%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20of%20the%20large%20entropy%20change%20in%20the%20molecular%20caloric%20and%20ferroelectric%20ammonium%20sulfate&rft.jtitle=arXiv.org&rft.au=Meijer,%20Bernet%20E&rft.date=2022-08-05&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2201.02548&rft_dat=%3Cproquest%3E2618382171%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a958-86acfe47a4d767d5f64e4b904c1de3911e6030644e4656d7dbec41a7c2ed1a673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2618382171&rft_id=info:pmid/&rfr_iscdi=true |