Loading…

Origin of the large entropy change in the molecular caloric and ferroelectric ammonium sulfate

The deceptively simple inorganic salt ammonium sulfate undergoes a ferroelectric phase transition associated with a very large entropy change and both electrocaloric and barocaloric functionality. While the structural origins of the electrical polarisation are now well established, those of the entr...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-08
Main Authors: Meijer, Bernet E, Yuan, Shurong, Cai, Guanqun, Dixey, Richard J, Demmel, Franz, Dove, Martin T, Liu, Jiaxun, Playford, Helen Y, Walker, Helen C, Phillips, Anthony E
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Meijer, Bernet E
Yuan, Shurong
Cai, Guanqun
Dixey, Richard J
Demmel, Franz
Dove, Martin T
Liu, Jiaxun
Playford, Helen Y
Walker, Helen C
Phillips, Anthony E
description The deceptively simple inorganic salt ammonium sulfate undergoes a ferroelectric phase transition associated with a very large entropy change and both electrocaloric and barocaloric functionality. While the structural origins of the electrical polarisation are now well established, those of the entropy change have been controversial for over fifty years. This question is resolved here using a combination of DFT phonon calculations with inelastic neutron scattering under variable temperature and pressure, supported by complementary total and quasielastic neutron scattering experiments. A simple model of the entropy in which each molecular ion is disordered across the mirror plane in the high symmetry phase, although widely used in the literature, proves to be untenable. Instead, the entropy arises from low-frequency librations of ammonium ions in this phase, with harmonic terms that are very small or even negative. These results suggest that, in the search for molecular materials with functionality derived from large entropy changes, vibrational entropy arising from broad energy minima is likely to be just as important as configurational entropy arising from crystallographic disorder.
doi_str_mv 10.48550/arxiv.2201.02548
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2618382171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618382171</sourcerecordid><originalsourceid>FETCH-LOGICAL-a958-86acfe47a4d767d5f64e4b904c1de3911e6030644e4656d7dbec41a7c2ed1a673</originalsourceid><addsrcrecordid>eNotjU1LAzEYhIMgWGp_gLeA5635TvYoxS8o9NKz5W3ybrtlN6nZXdF_b7SehplnmCHkjrOlclqzB8hf7edSCMaXTGjlrshMSMkrp4S4IYthODHGhLFCazkj75vcHtpIU0PHI9IO8gEpxjGn8zf1R4jFFvzL-tShn0qDeuhSbj2FGGiDOScsZPxL-j7FdurpMHUNjHhLrhvoBlz865xsn5-2q9dqvXl5Wz2uK6i1q5wB36CyoII1NujGKFT7minPA8qaczRMMqNKarQJNuzRKw7WCwwcjJVzcn-ZPef0MeEw7k5pyrE87oThTjrBLZc_hiBWOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618382171</pqid></control><display><type>article</type><title>Origin of the large entropy change in the molecular caloric and ferroelectric ammonium sulfate</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Meijer, Bernet E ; Yuan, Shurong ; Cai, Guanqun ; Dixey, Richard J ; Demmel, Franz ; Dove, Martin T ; Liu, Jiaxun ; Playford, Helen Y ; Walker, Helen C ; Phillips, Anthony E</creator><creatorcontrib>Meijer, Bernet E ; Yuan, Shurong ; Cai, Guanqun ; Dixey, Richard J ; Demmel, Franz ; Dove, Martin T ; Liu, Jiaxun ; Playford, Helen Y ; Walker, Helen C ; Phillips, Anthony E</creatorcontrib><description>The deceptively simple inorganic salt ammonium sulfate undergoes a ferroelectric phase transition associated with a very large entropy change and both electrocaloric and barocaloric functionality. While the structural origins of the electrical polarisation are now well established, those of the entropy change have been controversial for over fifty years. This question is resolved here using a combination of DFT phonon calculations with inelastic neutron scattering under variable temperature and pressure, supported by complementary total and quasielastic neutron scattering experiments. A simple model of the entropy in which each molecular ion is disordered across the mirror plane in the high symmetry phase, although widely used in the literature, proves to be untenable. Instead, the entropy arises from low-frequency librations of ammonium ions in this phase, with harmonic terms that are very small or even negative. These results suggest that, in the search for molecular materials with functionality derived from large entropy changes, vibrational entropy arising from broad energy minima is likely to be just as important as configurational entropy arising from crystallographic disorder.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2201.02548</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Ammonium sulfate ; Anharmonicity ; Crystallography ; Entropy ; Ferroelectric materials ; Ferroelectricity ; Inelastic scattering ; Inorganic salts ; Libration ; Molecular ions ; Neutron scattering ; Neutrons ; Phase transitions</subject><ispartof>arXiv.org, 2022-08</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2618382171?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25751,27923,37010,44588</link.rule.ids></links><search><creatorcontrib>Meijer, Bernet E</creatorcontrib><creatorcontrib>Yuan, Shurong</creatorcontrib><creatorcontrib>Cai, Guanqun</creatorcontrib><creatorcontrib>Dixey, Richard J</creatorcontrib><creatorcontrib>Demmel, Franz</creatorcontrib><creatorcontrib>Dove, Martin T</creatorcontrib><creatorcontrib>Liu, Jiaxun</creatorcontrib><creatorcontrib>Playford, Helen Y</creatorcontrib><creatorcontrib>Walker, Helen C</creatorcontrib><creatorcontrib>Phillips, Anthony E</creatorcontrib><title>Origin of the large entropy change in the molecular caloric and ferroelectric ammonium sulfate</title><title>arXiv.org</title><description>The deceptively simple inorganic salt ammonium sulfate undergoes a ferroelectric phase transition associated with a very large entropy change and both electrocaloric and barocaloric functionality. While the structural origins of the electrical polarisation are now well established, those of the entropy change have been controversial for over fifty years. This question is resolved here using a combination of DFT phonon calculations with inelastic neutron scattering under variable temperature and pressure, supported by complementary total and quasielastic neutron scattering experiments. A simple model of the entropy in which each molecular ion is disordered across the mirror plane in the high symmetry phase, although widely used in the literature, proves to be untenable. Instead, the entropy arises from low-frequency librations of ammonium ions in this phase, with harmonic terms that are very small or even negative. These results suggest that, in the search for molecular materials with functionality derived from large entropy changes, vibrational entropy arising from broad energy minima is likely to be just as important as configurational entropy arising from crystallographic disorder.</description><subject>Ammonium sulfate</subject><subject>Anharmonicity</subject><subject>Crystallography</subject><subject>Entropy</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Inelastic scattering</subject><subject>Inorganic salts</subject><subject>Libration</subject><subject>Molecular ions</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>Phase transitions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU1LAzEYhIMgWGp_gLeA5635TvYoxS8o9NKz5W3ybrtlN6nZXdF_b7SehplnmCHkjrOlclqzB8hf7edSCMaXTGjlrshMSMkrp4S4IYthODHGhLFCazkj75vcHtpIU0PHI9IO8gEpxjGn8zf1R4jFFvzL-tShn0qDeuhSbj2FGGiDOScsZPxL-j7FdurpMHUNjHhLrhvoBlz865xsn5-2q9dqvXl5Wz2uK6i1q5wB36CyoII1NujGKFT7minPA8qaczRMMqNKarQJNuzRKw7WCwwcjJVzcn-ZPef0MeEw7k5pyrE87oThTjrBLZc_hiBWOQ</recordid><startdate>20220805</startdate><enddate>20220805</enddate><creator>Meijer, Bernet E</creator><creator>Yuan, Shurong</creator><creator>Cai, Guanqun</creator><creator>Dixey, Richard J</creator><creator>Demmel, Franz</creator><creator>Dove, Martin T</creator><creator>Liu, Jiaxun</creator><creator>Playford, Helen Y</creator><creator>Walker, Helen C</creator><creator>Phillips, Anthony E</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220805</creationdate><title>Origin of the large entropy change in the molecular caloric and ferroelectric ammonium sulfate</title><author>Meijer, Bernet E ; Yuan, Shurong ; Cai, Guanqun ; Dixey, Richard J ; Demmel, Franz ; Dove, Martin T ; Liu, Jiaxun ; Playford, Helen Y ; Walker, Helen C ; Phillips, Anthony E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a958-86acfe47a4d767d5f64e4b904c1de3911e6030644e4656d7dbec41a7c2ed1a673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ammonium sulfate</topic><topic>Anharmonicity</topic><topic>Crystallography</topic><topic>Entropy</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Inelastic scattering</topic><topic>Inorganic salts</topic><topic>Libration</topic><topic>Molecular ions</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>Phase transitions</topic><toplevel>online_resources</toplevel><creatorcontrib>Meijer, Bernet E</creatorcontrib><creatorcontrib>Yuan, Shurong</creatorcontrib><creatorcontrib>Cai, Guanqun</creatorcontrib><creatorcontrib>Dixey, Richard J</creatorcontrib><creatorcontrib>Demmel, Franz</creatorcontrib><creatorcontrib>Dove, Martin T</creatorcontrib><creatorcontrib>Liu, Jiaxun</creatorcontrib><creatorcontrib>Playford, Helen Y</creatorcontrib><creatorcontrib>Walker, Helen C</creatorcontrib><creatorcontrib>Phillips, Anthony E</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meijer, Bernet E</au><au>Yuan, Shurong</au><au>Cai, Guanqun</au><au>Dixey, Richard J</au><au>Demmel, Franz</au><au>Dove, Martin T</au><au>Liu, Jiaxun</au><au>Playford, Helen Y</au><au>Walker, Helen C</au><au>Phillips, Anthony E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin of the large entropy change in the molecular caloric and ferroelectric ammonium sulfate</atitle><jtitle>arXiv.org</jtitle><date>2022-08-05</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The deceptively simple inorganic salt ammonium sulfate undergoes a ferroelectric phase transition associated with a very large entropy change and both electrocaloric and barocaloric functionality. While the structural origins of the electrical polarisation are now well established, those of the entropy change have been controversial for over fifty years. This question is resolved here using a combination of DFT phonon calculations with inelastic neutron scattering under variable temperature and pressure, supported by complementary total and quasielastic neutron scattering experiments. A simple model of the entropy in which each molecular ion is disordered across the mirror plane in the high symmetry phase, although widely used in the literature, proves to be untenable. Instead, the entropy arises from low-frequency librations of ammonium ions in this phase, with harmonic terms that are very small or even negative. These results suggest that, in the search for molecular materials with functionality derived from large entropy changes, vibrational entropy arising from broad energy minima is likely to be just as important as configurational entropy arising from crystallographic disorder.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2201.02548</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2618382171
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Ammonium sulfate
Anharmonicity
Crystallography
Entropy
Ferroelectric materials
Ferroelectricity
Inelastic scattering
Inorganic salts
Libration
Molecular ions
Neutron scattering
Neutrons
Phase transitions
title Origin of the large entropy change in the molecular caloric and ferroelectric ammonium sulfate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T10%3A12%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20of%20the%20large%20entropy%20change%20in%20the%20molecular%20caloric%20and%20ferroelectric%20ammonium%20sulfate&rft.jtitle=arXiv.org&rft.au=Meijer,%20Bernet%20E&rft.date=2022-08-05&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2201.02548&rft_dat=%3Cproquest%3E2618382171%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a958-86acfe47a4d767d5f64e4b904c1de3911e6030644e4656d7dbec41a7c2ed1a673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2618382171&rft_id=info:pmid/&rfr_iscdi=true