Loading…
Artificial neural network for prediction of thermal conductivity of rGO–metal oxide nanocomposite-based nanofluids
A four-input artificial neural network (ANN) model has been presented for the prediction of thermal conductivity of rGO–metal oxide nanocomposite-based nanofluids. For this, data of five types of water-based nanofluids containing rGO–metal oxide nanocomposites particles were used from the available...
Saved in:
Published in: | Neural computing & applications 2022, Vol.34 (1), p.271-282 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-4c29554b2dcb6ed5e49d1611c5aee33ec163447007a9b7b8973156ea3d82e2de3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-4c29554b2dcb6ed5e49d1611c5aee33ec163447007a9b7b8973156ea3d82e2de3 |
container_end_page | 282 |
container_issue | 1 |
container_start_page | 271 |
container_title | Neural computing & applications |
container_volume | 34 |
creator | Barai, Divya P. Bhanvase, Bharat A. Pandharipande, Shekhar L. |
description | A four-input artificial neural network (ANN) model has been presented for the prediction of thermal conductivity of rGO–metal oxide nanocomposite-based nanofluids. For this, data of five types of water-based nanofluids containing rGO–metal oxide nanocomposites particles were used from the available literature. The four-input variables considered were molecular weight of nanocomposite, average particle size of nanocomposites, concentration, and temperature of nanofluid which exhibited thermal conductivity of the nanofluids as output. Using the same architecture, two ANN models were developed, one using a total of 185 data points and the other by dividing the data points in two sets (training and testing). The model agreed well with the experimental data and exhibited an
R
2
value of 0.956 for the testing data set. Also, the magnitude of deviation of the predicted thermal conductivity for all the data points was very less with an average residual of ± 0.048 W/mK. |
doi_str_mv | 10.1007/s00521-021-06366-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2618384163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618384163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4c29554b2dcb6ed5e49d1611c5aee33ec163447007a9b7b8973156ea3d82e2de3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcIrEOWDHjpMcqwoKUqVe4Gw59gZcmjjYDo-e-Af-kC_BaZG4cViNNDszqx2Ezgm-JBgXVx7jPCMpHodTztPtAZoQRmlKcV4eogmu2Lhi9BideL_GGDNe5hMUZi6YxigjN0kHg9tBeLPuOWmsS3oH2qhgbJfYJglP4NqoULbTQ2RfTfgYebdYfX9-tRDizr4bDUknO6ts21tvAqS19KB3XLMZjPan6KiRGw9nvzhFDzfX9_PbdLla3M1ny1RRUoWUqazKc1ZnWtUcdA6s0oQTonIJQCkowiljRfxfVnVRl1VBSc5BUl1mkGmgU3Sxz-2dfRnAB7G2g-viSZFxUtKSxYSoyvYq5az3DhrRO9NK9yEIFmO7Yt-uwOOM7YptNNG9yUdx9wjuL_of1w_ATIEI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618384163</pqid></control><display><type>article</type><title>Artificial neural network for prediction of thermal conductivity of rGO–metal oxide nanocomposite-based nanofluids</title><source>Springer Link</source><creator>Barai, Divya P. ; Bhanvase, Bharat A. ; Pandharipande, Shekhar L.</creator><creatorcontrib>Barai, Divya P. ; Bhanvase, Bharat A. ; Pandharipande, Shekhar L.</creatorcontrib><description>A four-input artificial neural network (ANN) model has been presented for the prediction of thermal conductivity of rGO–metal oxide nanocomposite-based nanofluids. For this, data of five types of water-based nanofluids containing rGO–metal oxide nanocomposites particles were used from the available literature. The four-input variables considered were molecular weight of nanocomposite, average particle size of nanocomposites, concentration, and temperature of nanofluid which exhibited thermal conductivity of the nanofluids as output. Using the same architecture, two ANN models were developed, one using a total of 185 data points and the other by dividing the data points in two sets (training and testing). The model agreed well with the experimental data and exhibited an
R
2
value of 0.956 for the testing data set. Also, the magnitude of deviation of the predicted thermal conductivity for all the data points was very less with an average residual of ± 0.048 W/mK.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-021-06366-z</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Artificial neural networks ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Data points ; Heat conductivity ; Heat transfer ; Image Processing and Computer Vision ; Metal oxides ; Model testing ; Nanocomposites ; Nanofluids ; Neural networks ; Original Article ; Probability and Statistics in Computer Science ; Thermal conductivity</subject><ispartof>Neural computing & applications, 2022, Vol.34 (1), p.271-282</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4c29554b2dcb6ed5e49d1611c5aee33ec163447007a9b7b8973156ea3d82e2de3</citedby><cites>FETCH-LOGICAL-c319t-4c29554b2dcb6ed5e49d1611c5aee33ec163447007a9b7b8973156ea3d82e2de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Barai, Divya P.</creatorcontrib><creatorcontrib>Bhanvase, Bharat A.</creatorcontrib><creatorcontrib>Pandharipande, Shekhar L.</creatorcontrib><title>Artificial neural network for prediction of thermal conductivity of rGO–metal oxide nanocomposite-based nanofluids</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>A four-input artificial neural network (ANN) model has been presented for the prediction of thermal conductivity of rGO–metal oxide nanocomposite-based nanofluids. For this, data of five types of water-based nanofluids containing rGO–metal oxide nanocomposites particles were used from the available literature. The four-input variables considered were molecular weight of nanocomposite, average particle size of nanocomposites, concentration, and temperature of nanofluid which exhibited thermal conductivity of the nanofluids as output. Using the same architecture, two ANN models were developed, one using a total of 185 data points and the other by dividing the data points in two sets (training and testing). The model agreed well with the experimental data and exhibited an
R
2
value of 0.956 for the testing data set. Also, the magnitude of deviation of the predicted thermal conductivity for all the data points was very less with an average residual of ± 0.048 W/mK.</description><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Data points</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Image Processing and Computer Vision</subject><subject>Metal oxides</subject><subject>Model testing</subject><subject>Nanocomposites</subject><subject>Nanofluids</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Thermal conductivity</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcIrEOWDHjpMcqwoKUqVe4Gw59gZcmjjYDo-e-Af-kC_BaZG4cViNNDszqx2Ezgm-JBgXVx7jPCMpHodTztPtAZoQRmlKcV4eogmu2Lhi9BideL_GGDNe5hMUZi6YxigjN0kHg9tBeLPuOWmsS3oH2qhgbJfYJglP4NqoULbTQ2RfTfgYebdYfX9-tRDizr4bDUknO6ts21tvAqS19KB3XLMZjPan6KiRGw9nvzhFDzfX9_PbdLla3M1ny1RRUoWUqazKc1ZnWtUcdA6s0oQTonIJQCkowiljRfxfVnVRl1VBSc5BUl1mkGmgU3Sxz-2dfRnAB7G2g-viSZFxUtKSxYSoyvYq5az3DhrRO9NK9yEIFmO7Yt-uwOOM7YptNNG9yUdx9wjuL_of1w_ATIEI</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Barai, Divya P.</creator><creator>Bhanvase, Bharat A.</creator><creator>Pandharipande, Shekhar L.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2022</creationdate><title>Artificial neural network for prediction of thermal conductivity of rGO–metal oxide nanocomposite-based nanofluids</title><author>Barai, Divya P. ; Bhanvase, Bharat A. ; Pandharipande, Shekhar L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4c29554b2dcb6ed5e49d1611c5aee33ec163447007a9b7b8973156ea3d82e2de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Data points</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Image Processing and Computer Vision</topic><topic>Metal oxides</topic><topic>Model testing</topic><topic>Nanocomposites</topic><topic>Nanofluids</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barai, Divya P.</creatorcontrib><creatorcontrib>Bhanvase, Bharat A.</creatorcontrib><creatorcontrib>Pandharipande, Shekhar L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barai, Divya P.</au><au>Bhanvase, Bharat A.</au><au>Pandharipande, Shekhar L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial neural network for prediction of thermal conductivity of rGO–metal oxide nanocomposite-based nanofluids</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2022</date><risdate>2022</risdate><volume>34</volume><issue>1</issue><spage>271</spage><epage>282</epage><pages>271-282</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>A four-input artificial neural network (ANN) model has been presented for the prediction of thermal conductivity of rGO–metal oxide nanocomposite-based nanofluids. For this, data of five types of water-based nanofluids containing rGO–metal oxide nanocomposites particles were used from the available literature. The four-input variables considered were molecular weight of nanocomposite, average particle size of nanocomposites, concentration, and temperature of nanofluid which exhibited thermal conductivity of the nanofluids as output. Using the same architecture, two ANN models were developed, one using a total of 185 data points and the other by dividing the data points in two sets (training and testing). The model agreed well with the experimental data and exhibited an
R
2
value of 0.956 for the testing data set. Also, the magnitude of deviation of the predicted thermal conductivity for all the data points was very less with an average residual of ± 0.048 W/mK.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-021-06366-z</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2022, Vol.34 (1), p.271-282 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2618384163 |
source | Springer Link |
subjects | Artificial Intelligence Artificial neural networks Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Data points Heat conductivity Heat transfer Image Processing and Computer Vision Metal oxides Model testing Nanocomposites Nanofluids Neural networks Original Article Probability and Statistics in Computer Science Thermal conductivity |
title | Artificial neural network for prediction of thermal conductivity of rGO–metal oxide nanocomposite-based nanofluids |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A48%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20neural%20network%20for%20prediction%20of%20thermal%20conductivity%20of%20rGO%E2%80%93metal%20oxide%20nanocomposite-based%20nanofluids&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Barai,%20Divya%20P.&rft.date=2022&rft.volume=34&rft.issue=1&rft.spage=271&rft.epage=282&rft.pages=271-282&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-021-06366-z&rft_dat=%3Cproquest_cross%3E2618384163%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-4c29554b2dcb6ed5e49d1611c5aee33ec163447007a9b7b8973156ea3d82e2de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2618384163&rft_id=info:pmid/&rfr_iscdi=true |