Loading…

Artificial neural network for prediction of thermal conductivity of rGO–metal oxide nanocomposite-based nanofluids

A four-input artificial neural network (ANN) model has been presented for the prediction of thermal conductivity of rGO–metal oxide nanocomposite-based nanofluids. For this, data of five types of water-based nanofluids containing rGO–metal oxide nanocomposites particles were used from the available...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications 2022, Vol.34 (1), p.271-282
Main Authors: Barai, Divya P., Bhanvase, Bharat A., Pandharipande, Shekhar L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-4c29554b2dcb6ed5e49d1611c5aee33ec163447007a9b7b8973156ea3d82e2de3
cites cdi_FETCH-LOGICAL-c319t-4c29554b2dcb6ed5e49d1611c5aee33ec163447007a9b7b8973156ea3d82e2de3
container_end_page 282
container_issue 1
container_start_page 271
container_title Neural computing & applications
container_volume 34
creator Barai, Divya P.
Bhanvase, Bharat A.
Pandharipande, Shekhar L.
description A four-input artificial neural network (ANN) model has been presented for the prediction of thermal conductivity of rGO–metal oxide nanocomposite-based nanofluids. For this, data of five types of water-based nanofluids containing rGO–metal oxide nanocomposites particles were used from the available literature. The four-input variables considered were molecular weight of nanocomposite, average particle size of nanocomposites, concentration, and temperature of nanofluid which exhibited thermal conductivity of the nanofluids as output. Using the same architecture, two ANN models were developed, one using a total of 185 data points and the other by dividing the data points in two sets (training and testing). The model agreed well with the experimental data and exhibited an R 2 value of 0.956 for the testing data set. Also, the magnitude of deviation of the predicted thermal conductivity for all the data points was very less with an average residual of ± 0.048 W/mK.
doi_str_mv 10.1007/s00521-021-06366-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2618384163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618384163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4c29554b2dcb6ed5e49d1611c5aee33ec163447007a9b7b8973156ea3d82e2de3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcIrEOWDHjpMcqwoKUqVe4Gw59gZcmjjYDo-e-Af-kC_BaZG4cViNNDszqx2Ezgm-JBgXVx7jPCMpHodTztPtAZoQRmlKcV4eogmu2Lhi9BideL_GGDNe5hMUZi6YxigjN0kHg9tBeLPuOWmsS3oH2qhgbJfYJglP4NqoULbTQ2RfTfgYebdYfX9-tRDizr4bDUknO6ts21tvAqS19KB3XLMZjPan6KiRGw9nvzhFDzfX9_PbdLla3M1ny1RRUoWUqazKc1ZnWtUcdA6s0oQTonIJQCkowiljRfxfVnVRl1VBSc5BUl1mkGmgU3Sxz-2dfRnAB7G2g-viSZFxUtKSxYSoyvYq5az3DhrRO9NK9yEIFmO7Yt-uwOOM7YptNNG9yUdx9wjuL_of1w_ATIEI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618384163</pqid></control><display><type>article</type><title>Artificial neural network for prediction of thermal conductivity of rGO–metal oxide nanocomposite-based nanofluids</title><source>Springer Link</source><creator>Barai, Divya P. ; Bhanvase, Bharat A. ; Pandharipande, Shekhar L.</creator><creatorcontrib>Barai, Divya P. ; Bhanvase, Bharat A. ; Pandharipande, Shekhar L.</creatorcontrib><description>A four-input artificial neural network (ANN) model has been presented for the prediction of thermal conductivity of rGO–metal oxide nanocomposite-based nanofluids. For this, data of five types of water-based nanofluids containing rGO–metal oxide nanocomposites particles were used from the available literature. The four-input variables considered were molecular weight of nanocomposite, average particle size of nanocomposites, concentration, and temperature of nanofluid which exhibited thermal conductivity of the nanofluids as output. Using the same architecture, two ANN models were developed, one using a total of 185 data points and the other by dividing the data points in two sets (training and testing). The model agreed well with the experimental data and exhibited an R 2 value of 0.956 for the testing data set. Also, the magnitude of deviation of the predicted thermal conductivity for all the data points was very less with an average residual of ± 0.048 W/mK.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-021-06366-z</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Artificial neural networks ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Data points ; Heat conductivity ; Heat transfer ; Image Processing and Computer Vision ; Metal oxides ; Model testing ; Nanocomposites ; Nanofluids ; Neural networks ; Original Article ; Probability and Statistics in Computer Science ; Thermal conductivity</subject><ispartof>Neural computing &amp; applications, 2022, Vol.34 (1), p.271-282</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4c29554b2dcb6ed5e49d1611c5aee33ec163447007a9b7b8973156ea3d82e2de3</citedby><cites>FETCH-LOGICAL-c319t-4c29554b2dcb6ed5e49d1611c5aee33ec163447007a9b7b8973156ea3d82e2de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Barai, Divya P.</creatorcontrib><creatorcontrib>Bhanvase, Bharat A.</creatorcontrib><creatorcontrib>Pandharipande, Shekhar L.</creatorcontrib><title>Artificial neural network for prediction of thermal conductivity of rGO–metal oxide nanocomposite-based nanofluids</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>A four-input artificial neural network (ANN) model has been presented for the prediction of thermal conductivity of rGO–metal oxide nanocomposite-based nanofluids. For this, data of five types of water-based nanofluids containing rGO–metal oxide nanocomposites particles were used from the available literature. The four-input variables considered were molecular weight of nanocomposite, average particle size of nanocomposites, concentration, and temperature of nanofluid which exhibited thermal conductivity of the nanofluids as output. Using the same architecture, two ANN models were developed, one using a total of 185 data points and the other by dividing the data points in two sets (training and testing). The model agreed well with the experimental data and exhibited an R 2 value of 0.956 for the testing data set. Also, the magnitude of deviation of the predicted thermal conductivity for all the data points was very less with an average residual of ± 0.048 W/mK.</description><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Data points</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Image Processing and Computer Vision</subject><subject>Metal oxides</subject><subject>Model testing</subject><subject>Nanocomposites</subject><subject>Nanofluids</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><subject>Thermal conductivity</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcIrEOWDHjpMcqwoKUqVe4Gw59gZcmjjYDo-e-Af-kC_BaZG4cViNNDszqx2Ezgm-JBgXVx7jPCMpHodTztPtAZoQRmlKcV4eogmu2Lhi9BideL_GGDNe5hMUZi6YxigjN0kHg9tBeLPuOWmsS3oH2qhgbJfYJglP4NqoULbTQ2RfTfgYebdYfX9-tRDizr4bDUknO6ts21tvAqS19KB3XLMZjPan6KiRGw9nvzhFDzfX9_PbdLla3M1ny1RRUoWUqazKc1ZnWtUcdA6s0oQTonIJQCkowiljRfxfVnVRl1VBSc5BUl1mkGmgU3Sxz-2dfRnAB7G2g-viSZFxUtKSxYSoyvYq5az3DhrRO9NK9yEIFmO7Yt-uwOOM7YptNNG9yUdx9wjuL_of1w_ATIEI</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Barai, Divya P.</creator><creator>Bhanvase, Bharat A.</creator><creator>Pandharipande, Shekhar L.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>2022</creationdate><title>Artificial neural network for prediction of thermal conductivity of rGO–metal oxide nanocomposite-based nanofluids</title><author>Barai, Divya P. ; Bhanvase, Bharat A. ; Pandharipande, Shekhar L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4c29554b2dcb6ed5e49d1611c5aee33ec163447007a9b7b8973156ea3d82e2de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Data points</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Image Processing and Computer Vision</topic><topic>Metal oxides</topic><topic>Model testing</topic><topic>Nanocomposites</topic><topic>Nanofluids</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barai, Divya P.</creatorcontrib><creatorcontrib>Bhanvase, Bharat A.</creatorcontrib><creatorcontrib>Pandharipande, Shekhar L.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barai, Divya P.</au><au>Bhanvase, Bharat A.</au><au>Pandharipande, Shekhar L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial neural network for prediction of thermal conductivity of rGO–metal oxide nanocomposite-based nanofluids</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2022</date><risdate>2022</risdate><volume>34</volume><issue>1</issue><spage>271</spage><epage>282</epage><pages>271-282</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>A four-input artificial neural network (ANN) model has been presented for the prediction of thermal conductivity of rGO–metal oxide nanocomposite-based nanofluids. For this, data of five types of water-based nanofluids containing rGO–metal oxide nanocomposites particles were used from the available literature. The four-input variables considered were molecular weight of nanocomposite, average particle size of nanocomposites, concentration, and temperature of nanofluid which exhibited thermal conductivity of the nanofluids as output. Using the same architecture, two ANN models were developed, one using a total of 185 data points and the other by dividing the data points in two sets (training and testing). The model agreed well with the experimental data and exhibited an R 2 value of 0.956 for the testing data set. Also, the magnitude of deviation of the predicted thermal conductivity for all the data points was very less with an average residual of ± 0.048 W/mK.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-021-06366-z</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2022, Vol.34 (1), p.271-282
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2618384163
source Springer Link
subjects Artificial Intelligence
Artificial neural networks
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Data points
Heat conductivity
Heat transfer
Image Processing and Computer Vision
Metal oxides
Model testing
Nanocomposites
Nanofluids
Neural networks
Original Article
Probability and Statistics in Computer Science
Thermal conductivity
title Artificial neural network for prediction of thermal conductivity of rGO–metal oxide nanocomposite-based nanofluids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A48%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20neural%20network%20for%20prediction%20of%20thermal%20conductivity%20of%20rGO%E2%80%93metal%20oxide%20nanocomposite-based%20nanofluids&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Barai,%20Divya%20P.&rft.date=2022&rft.volume=34&rft.issue=1&rft.spage=271&rft.epage=282&rft.pages=271-282&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-021-06366-z&rft_dat=%3Cproquest_cross%3E2618384163%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-4c29554b2dcb6ed5e49d1611c5aee33ec163447007a9b7b8973156ea3d82e2de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2618384163&rft_id=info:pmid/&rfr_iscdi=true