Loading…
Investigation on the effect of cottonseed oil blended with different percentages of octanol and suspended MWCNT nanoparticles on diesel engine characteristics
In the present work, a series of experiments were designed and conducted to prepare biodiesel from cottonseed oil and to blend it with octanol. The thermal and mass transfer characteristics of the biodiesel were further improved by adding functionalized multi-walled carbon nanotubes (MWCNTs). The pe...
Saved in:
Published in: | Journal of thermal analysis and calorimetry 2022, Vol.147 (1), p.525-542 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the present work, a series of experiments were designed and conducted to prepare biodiesel from cottonseed oil and to blend it with octanol. The thermal and mass transfer characteristics of the biodiesel were further improved by adding functionalized multi-walled carbon nanotubes (MWCNTs). The performance of the engine with the blended fuel was analyzed through characterization and measurement of the gas emissions from the engine. Four blends of cottonseed oil (B20, B40, B60, and B100) were prepared initially, and each blend was added with octanol additive of 5%, 10%, and 15% together with 3% of functionalized MWCNTs by mass. The performance analysis showed that B20 with 5%, 10%, and 15% octanol represented relatively lower brake specific fuel consumption relative to all test fuels. Likewise, the addition of MWCNT nanoparticle further stabilized the rate of fuel consumption and brake thermal efficiency. It was also identified that at larger values of diesel and biodiesel blends, the performance and also the quantity of gas emission were the same. |
---|---|
ISSN: | 1388-6150 1588-2926 |
DOI: | 10.1007/s10973-020-10293-x |