Loading…

Truncated affine Rozansky--Witten models as extended TQFTs

We construct extended TQFTs associated to Rozansky--Witten models with target manifolds \(T^*\mathbb{C}^n\). The starting point of the construction is the 3-category whose objects are such Rozansky--Witten models, and whose morphisms are defects of all codimensions. By truncation, we obtain a (non-s...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-01
Main Authors: Brunner, Ilka, Carqueville, Nils, Roggenkamp, Daniel
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Brunner, Ilka
Carqueville, Nils
Roggenkamp, Daniel
description We construct extended TQFTs associated to Rozansky--Witten models with target manifolds \(T^*\mathbb{C}^n\). The starting point of the construction is the 3-category whose objects are such Rozansky--Witten models, and whose morphisms are defects of all codimensions. By truncation, we obtain a (non-semisimple) 2-category \(\mathcal{C}\) of bulk theories, surface defects, and isomorphism classes of line defects. Through a systematic application of the cobordism hypothesis we construct a unique extended oriented 2-dimensional TQFT valued in \(\mathcal{C}\) for every affine Rozansky--Witten model. By evaluating this TQFT on closed surfaces we obtain the infinite-dimensional state spaces (graded by flavour and R-charges) of the initial 3-dimensional theory. Furthermore, we explicitly compute the commutative Frobenius algebras that classify the restrictions of the extended theories to circles and bordisms between them.
doi_str_mv 10.48550/arxiv.2201.03284
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2618758452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618758452</sourcerecordid><originalsourceid>FETCH-LOGICAL-a954-ce12f45c86fca7e0f245d8626b8648e128ed150a62accaaab8e35ca45567a2c53</originalsourceid><addsrcrecordid>eNotjUFLw0AQhRdBsNT-AG8Bzxt3Z3c2ozcpVoWCKAGPZbqZhdSaaDaV6q83oKfH43t8T6kLa0pPiOaKh2P7VQIYWxoH5E_UDJyzmjzAmVrkvDPGQKgA0c3UTT0cusijNAWn1HZSvPQ_3OW3b61f23GUrnjvG9nngnMhx6k307R-XtX5XJ0m3mdZ_Odc1au7evmg10_3j8vbteZr9DqKheQxUkiRKzEJPDYUIGwpeJogSWPRcACOkZm3JA4je8RQMUR0c3X5p_0Y-s-D5HGz6w9DNz1uIFiqkDyC-wU_AUiB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618758452</pqid></control><display><type>article</type><title>Truncated affine Rozansky--Witten models as extended TQFTs</title><source>Publicly Available Content (ProQuest)</source><creator>Brunner, Ilka ; Carqueville, Nils ; Roggenkamp, Daniel</creator><creatorcontrib>Brunner, Ilka ; Carqueville, Nils ; Roggenkamp, Daniel</creatorcontrib><description>We construct extended TQFTs associated to Rozansky--Witten models with target manifolds \(T^*\mathbb{C}^n\). The starting point of the construction is the 3-category whose objects are such Rozansky--Witten models, and whose morphisms are defects of all codimensions. By truncation, we obtain a (non-semisimple) 2-category \(\mathcal{C}\) of bulk theories, surface defects, and isomorphism classes of line defects. Through a systematic application of the cobordism hypothesis we construct a unique extended oriented 2-dimensional TQFT valued in \(\mathcal{C}\) for every affine Rozansky--Witten model. By evaluating this TQFT on closed surfaces we obtain the infinite-dimensional state spaces (graded by flavour and R-charges) of the initial 3-dimensional theory. Furthermore, we explicitly compute the commutative Frobenius algebras that classify the restrictions of the extended theories to circles and bordisms between them.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2201.03284</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Dislocations ; Flavors ; Isomorphism ; Surface defects ; Two dimensional models</subject><ispartof>arXiv.org, 2022-01</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2618758452?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Brunner, Ilka</creatorcontrib><creatorcontrib>Carqueville, Nils</creatorcontrib><creatorcontrib>Roggenkamp, Daniel</creatorcontrib><title>Truncated affine Rozansky--Witten models as extended TQFTs</title><title>arXiv.org</title><description>We construct extended TQFTs associated to Rozansky--Witten models with target manifolds \(T^*\mathbb{C}^n\). The starting point of the construction is the 3-category whose objects are such Rozansky--Witten models, and whose morphisms are defects of all codimensions. By truncation, we obtain a (non-semisimple) 2-category \(\mathcal{C}\) of bulk theories, surface defects, and isomorphism classes of line defects. Through a systematic application of the cobordism hypothesis we construct a unique extended oriented 2-dimensional TQFT valued in \(\mathcal{C}\) for every affine Rozansky--Witten model. By evaluating this TQFT on closed surfaces we obtain the infinite-dimensional state spaces (graded by flavour and R-charges) of the initial 3-dimensional theory. Furthermore, we explicitly compute the commutative Frobenius algebras that classify the restrictions of the extended theories to circles and bordisms between them.</description><subject>Dislocations</subject><subject>Flavors</subject><subject>Isomorphism</subject><subject>Surface defects</subject><subject>Two dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjUFLw0AQhRdBsNT-AG8Bzxt3Z3c2ozcpVoWCKAGPZbqZhdSaaDaV6q83oKfH43t8T6kLa0pPiOaKh2P7VQIYWxoH5E_UDJyzmjzAmVrkvDPGQKgA0c3UTT0cusijNAWn1HZSvPQ_3OW3b61f23GUrnjvG9nngnMhx6k307R-XtX5XJ0m3mdZ_Odc1au7evmg10_3j8vbteZr9DqKheQxUkiRKzEJPDYUIGwpeJogSWPRcACOkZm3JA4je8RQMUR0c3X5p_0Y-s-D5HGz6w9DNz1uIFiqkDyC-wU_AUiB</recordid><startdate>20220120</startdate><enddate>20220120</enddate><creator>Brunner, Ilka</creator><creator>Carqueville, Nils</creator><creator>Roggenkamp, Daniel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220120</creationdate><title>Truncated affine Rozansky--Witten models as extended TQFTs</title><author>Brunner, Ilka ; Carqueville, Nils ; Roggenkamp, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a954-ce12f45c86fca7e0f245d8626b8648e128ed150a62accaaab8e35ca45567a2c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Dislocations</topic><topic>Flavors</topic><topic>Isomorphism</topic><topic>Surface defects</topic><topic>Two dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Brunner, Ilka</creatorcontrib><creatorcontrib>Carqueville, Nils</creatorcontrib><creatorcontrib>Roggenkamp, Daniel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brunner, Ilka</au><au>Carqueville, Nils</au><au>Roggenkamp, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Truncated affine Rozansky--Witten models as extended TQFTs</atitle><jtitle>arXiv.org</jtitle><date>2022-01-20</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We construct extended TQFTs associated to Rozansky--Witten models with target manifolds \(T^*\mathbb{C}^n\). The starting point of the construction is the 3-category whose objects are such Rozansky--Witten models, and whose morphisms are defects of all codimensions. By truncation, we obtain a (non-semisimple) 2-category \(\mathcal{C}\) of bulk theories, surface defects, and isomorphism classes of line defects. Through a systematic application of the cobordism hypothesis we construct a unique extended oriented 2-dimensional TQFT valued in \(\mathcal{C}\) for every affine Rozansky--Witten model. By evaluating this TQFT on closed surfaces we obtain the infinite-dimensional state spaces (graded by flavour and R-charges) of the initial 3-dimensional theory. Furthermore, we explicitly compute the commutative Frobenius algebras that classify the restrictions of the extended theories to circles and bordisms between them.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2201.03284</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2618758452
source Publicly Available Content (ProQuest)
subjects Dislocations
Flavors
Isomorphism
Surface defects
Two dimensional models
title Truncated affine Rozansky--Witten models as extended TQFTs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T01%3A42%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Truncated%20affine%20Rozansky--Witten%20models%20as%20extended%20TQFTs&rft.jtitle=arXiv.org&rft.au=Brunner,%20Ilka&rft.date=2022-01-20&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2201.03284&rft_dat=%3Cproquest%3E2618758452%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a954-ce12f45c86fca7e0f245d8626b8648e128ed150a62accaaab8e35ca45567a2c53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2618758452&rft_id=info:pmid/&rfr_iscdi=true