Loading…

Integration of Morphology and Electronic Structure Modulation on Atomic Iron‐Nitrogen‐Carbon Catalysts for Highly Efficient Oxygen Reduction

Atomic transition‐metal‐nitrogen‐carbon catalysts (M‐N‐Cs) hold great promise as Pt‐group‐metal‐free candidates for electrochemical reactions, yet their rational design and controllable synthesis remain fundamental challenges. Here, the molten‐salts mediated pyrolysis is demonstrated to be an effect...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2022-01, Vol.32 (2), p.n/a
Main Authors: Xin, Cuncun, Shang, Wenzhe, Hu, Jinwen, Zhu, Chao, Guo, Jingya, Zhang, Jiangwei, Dong, Haopeng, Liu, Wei, Shi, Yantao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3835-e59ce92820d9bd0bef66ca4765129bec280bc0e0306da3bbe7d5bebbc1a99ee63
cites cdi_FETCH-LOGICAL-c3835-e59ce92820d9bd0bef66ca4765129bec280bc0e0306da3bbe7d5bebbc1a99ee63
container_end_page n/a
container_issue 2
container_start_page
container_title Advanced functional materials
container_volume 32
creator Xin, Cuncun
Shang, Wenzhe
Hu, Jinwen
Zhu, Chao
Guo, Jingya
Zhang, Jiangwei
Dong, Haopeng
Liu, Wei
Shi, Yantao
description Atomic transition‐metal‐nitrogen‐carbon catalysts (M‐N‐Cs) hold great promise as Pt‐group‐metal‐free candidates for electrochemical reactions, yet their rational design and controllable synthesis remain fundamental challenges. Here, the molten‐salts mediated pyrolysis is demonstrated to be an effective and facile strategy for simultaneous morphology and electronic structure modulation of prototypical Fe‐N‐C materials, which functions as efficient oxygen reduction electrocatalysts. Taking advantage of the strong polarity and salt templating effects, the as‐obtained Fe‐N/C‐single atom catalyst (SAC) possesses hierarchical porous nanosheet morphology with an impressive specific surface area of 2237 m2 g−1 and unique FeN4Cl moieties as isolated active centers. The Fe‐N/C‐SAC delivers remarkable alkaline oxygen reduction reaction (ORR) activity with a half‐wave potential of 0.91 V and record kinetic current density up to 55 mA cm−2, outperforming the benchmark Pt/C. By virtue of dechlorination treatment, it is experimentally identified that the enhanced ORR activities are essentially governed by the axially bound Cl. Theoretical calculations rationalize this finding and demonstrate that the well‐defined fivefold‐coordinated configuration accelerates 4e− pathway kinetics through near‐optimal adsorption of the *OH intermediates and tunes the potential determining step from *OH reduction to *OOH formation. This study provides fundamental insights into the coordination‐engineered strategy in single‐atom catalysis. Atomic‐site halogenation and hierarchical porosity engineering on M‐N‐Cs catalysts are achieved through a controllable molten‐salts mediated pyrolysis method to boost the sluggish oxygen reduction kinetics. Fe‐N/C‐single atom catalyst demonstrates a remarkable alkaline oxygen reduction reaction activity with a half‐wave potential of 0.91 V and record kinetic current density up to 55 mA cm−2, outperforming the benchmark Pt/C.
doi_str_mv 10.1002/adfm.202108345
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2618856423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618856423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3835-e59ce92820d9bd0bef66ca4765129bec280bc0e0306da3bbe7d5bebbc1a99ee63</originalsourceid><addsrcrecordid>eNqFkM1Kw0AUhYMoWKtb1wOuW-cnmSTLEltbaC34A-7CzOQmTUkzdTJBs_MR-ow-iVNa6tLVPXC-cy4cz7sleEgwpvciyzdDiinBEfODM69HOOEDhml0ftLk_dK7apo1xiQMmd_zdrPaQmGELXWNdI4W2mxXutJFh0SdoXEFyhpdlwq9WNMq2xpwTNZWx0SNRlZvnD1z1M_37ql0eAF7mQgjnZ8IK6qusQ3KtUHTslhVHRrnealKqC1afnUOR8-QuXZXee1d5KJq4OZ4-97bZPyaTAfz5eMsGc0HikUsGEAQK4hpRHEWywxLyDlXwg95QGgsQdEIS4UBM8wzwaSEMAskSKmIiGMAzvre3aF3a_RHC41N17o1tXuZUk6iKOA-ZY4aHihldNMYyNOtKTfCdCnB6X71dL96elrdBeJD4LOsoPuHTkcPk8Vf9hday4xh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618856423</pqid></control><display><type>article</type><title>Integration of Morphology and Electronic Structure Modulation on Atomic Iron‐Nitrogen‐Carbon Catalysts for Highly Efficient Oxygen Reduction</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Xin, Cuncun ; Shang, Wenzhe ; Hu, Jinwen ; Zhu, Chao ; Guo, Jingya ; Zhang, Jiangwei ; Dong, Haopeng ; Liu, Wei ; Shi, Yantao</creator><creatorcontrib>Xin, Cuncun ; Shang, Wenzhe ; Hu, Jinwen ; Zhu, Chao ; Guo, Jingya ; Zhang, Jiangwei ; Dong, Haopeng ; Liu, Wei ; Shi, Yantao</creatorcontrib><description>Atomic transition‐metal‐nitrogen‐carbon catalysts (M‐N‐Cs) hold great promise as Pt‐group‐metal‐free candidates for electrochemical reactions, yet their rational design and controllable synthesis remain fundamental challenges. Here, the molten‐salts mediated pyrolysis is demonstrated to be an effective and facile strategy for simultaneous morphology and electronic structure modulation of prototypical Fe‐N‐C materials, which functions as efficient oxygen reduction electrocatalysts. Taking advantage of the strong polarity and salt templating effects, the as‐obtained Fe‐N/C‐single atom catalyst (SAC) possesses hierarchical porous nanosheet morphology with an impressive specific surface area of 2237 m2 g−1 and unique FeN4Cl moieties as isolated active centers. The Fe‐N/C‐SAC delivers remarkable alkaline oxygen reduction reaction (ORR) activity with a half‐wave potential of 0.91 V and record kinetic current density up to 55 mA cm−2, outperforming the benchmark Pt/C. By virtue of dechlorination treatment, it is experimentally identified that the enhanced ORR activities are essentially governed by the axially bound Cl. Theoretical calculations rationalize this finding and demonstrate that the well‐defined fivefold‐coordinated configuration accelerates 4e− pathway kinetics through near‐optimal adsorption of the *OH intermediates and tunes the potential determining step from *OH reduction to *OOH formation. This study provides fundamental insights into the coordination‐engineered strategy in single‐atom catalysis. Atomic‐site halogenation and hierarchical porosity engineering on M‐N‐Cs catalysts are achieved through a controllable molten‐salts mediated pyrolysis method to boost the sluggish oxygen reduction kinetics. Fe‐N/C‐single atom catalyst demonstrates a remarkable alkaline oxygen reduction reaction activity with a half‐wave potential of 0.91 V and record kinetic current density up to 55 mA cm−2, outperforming the benchmark Pt/C.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202108345</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Atomic structure ; Carbon ; Catalysis ; Chemical reactions ; Dechlorination ; Electrocatalysts ; Electronic structure ; halogen coordination ; Iron ; Materials science ; Mathematical analysis ; Modulation ; molten‐salts strategy ; Morphology ; Nitrogen ; oxygen reduction reaction ; Oxygen reduction reactions ; Pyrolysis ; Single atom catalysts ; X‐ray absorption spectroscopy</subject><ispartof>Advanced functional materials, 2022-01, Vol.32 (2), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3835-e59ce92820d9bd0bef66ca4765129bec280bc0e0306da3bbe7d5bebbc1a99ee63</citedby><cites>FETCH-LOGICAL-c3835-e59ce92820d9bd0bef66ca4765129bec280bc0e0306da3bbe7d5bebbc1a99ee63</cites><orcidid>0000-0002-7318-2963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Xin, Cuncun</creatorcontrib><creatorcontrib>Shang, Wenzhe</creatorcontrib><creatorcontrib>Hu, Jinwen</creatorcontrib><creatorcontrib>Zhu, Chao</creatorcontrib><creatorcontrib>Guo, Jingya</creatorcontrib><creatorcontrib>Zhang, Jiangwei</creatorcontrib><creatorcontrib>Dong, Haopeng</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Shi, Yantao</creatorcontrib><title>Integration of Morphology and Electronic Structure Modulation on Atomic Iron‐Nitrogen‐Carbon Catalysts for Highly Efficient Oxygen Reduction</title><title>Advanced functional materials</title><description>Atomic transition‐metal‐nitrogen‐carbon catalysts (M‐N‐Cs) hold great promise as Pt‐group‐metal‐free candidates for electrochemical reactions, yet their rational design and controllable synthesis remain fundamental challenges. Here, the molten‐salts mediated pyrolysis is demonstrated to be an effective and facile strategy for simultaneous morphology and electronic structure modulation of prototypical Fe‐N‐C materials, which functions as efficient oxygen reduction electrocatalysts. Taking advantage of the strong polarity and salt templating effects, the as‐obtained Fe‐N/C‐single atom catalyst (SAC) possesses hierarchical porous nanosheet morphology with an impressive specific surface area of 2237 m2 g−1 and unique FeN4Cl moieties as isolated active centers. The Fe‐N/C‐SAC delivers remarkable alkaline oxygen reduction reaction (ORR) activity with a half‐wave potential of 0.91 V and record kinetic current density up to 55 mA cm−2, outperforming the benchmark Pt/C. By virtue of dechlorination treatment, it is experimentally identified that the enhanced ORR activities are essentially governed by the axially bound Cl. Theoretical calculations rationalize this finding and demonstrate that the well‐defined fivefold‐coordinated configuration accelerates 4e− pathway kinetics through near‐optimal adsorption of the *OH intermediates and tunes the potential determining step from *OH reduction to *OOH formation. This study provides fundamental insights into the coordination‐engineered strategy in single‐atom catalysis. Atomic‐site halogenation and hierarchical porosity engineering on M‐N‐Cs catalysts are achieved through a controllable molten‐salts mediated pyrolysis method to boost the sluggish oxygen reduction kinetics. Fe‐N/C‐single atom catalyst demonstrates a remarkable alkaline oxygen reduction reaction activity with a half‐wave potential of 0.91 V and record kinetic current density up to 55 mA cm−2, outperforming the benchmark Pt/C.</description><subject>Atomic structure</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>Chemical reactions</subject><subject>Dechlorination</subject><subject>Electrocatalysts</subject><subject>Electronic structure</subject><subject>halogen coordination</subject><subject>Iron</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Modulation</subject><subject>molten‐salts strategy</subject><subject>Morphology</subject><subject>Nitrogen</subject><subject>oxygen reduction reaction</subject><subject>Oxygen reduction reactions</subject><subject>Pyrolysis</subject><subject>Single atom catalysts</subject><subject>X‐ray absorption spectroscopy</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Kw0AUhYMoWKtb1wOuW-cnmSTLEltbaC34A-7CzOQmTUkzdTJBs_MR-ow-iVNa6tLVPXC-cy4cz7sleEgwpvciyzdDiinBEfODM69HOOEDhml0ftLk_dK7apo1xiQMmd_zdrPaQmGELXWNdI4W2mxXutJFh0SdoXEFyhpdlwq9WNMq2xpwTNZWx0SNRlZvnD1z1M_37ql0eAF7mQgjnZ8IK6qusQ3KtUHTslhVHRrnealKqC1afnUOR8-QuXZXee1d5KJq4OZ4-97bZPyaTAfz5eMsGc0HikUsGEAQK4hpRHEWywxLyDlXwg95QGgsQdEIS4UBM8wzwaSEMAskSKmIiGMAzvre3aF3a_RHC41N17o1tXuZUk6iKOA-ZY4aHihldNMYyNOtKTfCdCnB6X71dL96elrdBeJD4LOsoPuHTkcPk8Vf9hday4xh</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Xin, Cuncun</creator><creator>Shang, Wenzhe</creator><creator>Hu, Jinwen</creator><creator>Zhu, Chao</creator><creator>Guo, Jingya</creator><creator>Zhang, Jiangwei</creator><creator>Dong, Haopeng</creator><creator>Liu, Wei</creator><creator>Shi, Yantao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7318-2963</orcidid></search><sort><creationdate>20220101</creationdate><title>Integration of Morphology and Electronic Structure Modulation on Atomic Iron‐Nitrogen‐Carbon Catalysts for Highly Efficient Oxygen Reduction</title><author>Xin, Cuncun ; Shang, Wenzhe ; Hu, Jinwen ; Zhu, Chao ; Guo, Jingya ; Zhang, Jiangwei ; Dong, Haopeng ; Liu, Wei ; Shi, Yantao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3835-e59ce92820d9bd0bef66ca4765129bec280bc0e0306da3bbe7d5bebbc1a99ee63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic structure</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>Chemical reactions</topic><topic>Dechlorination</topic><topic>Electrocatalysts</topic><topic>Electronic structure</topic><topic>halogen coordination</topic><topic>Iron</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Modulation</topic><topic>molten‐salts strategy</topic><topic>Morphology</topic><topic>Nitrogen</topic><topic>oxygen reduction reaction</topic><topic>Oxygen reduction reactions</topic><topic>Pyrolysis</topic><topic>Single atom catalysts</topic><topic>X‐ray absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xin, Cuncun</creatorcontrib><creatorcontrib>Shang, Wenzhe</creatorcontrib><creatorcontrib>Hu, Jinwen</creatorcontrib><creatorcontrib>Zhu, Chao</creatorcontrib><creatorcontrib>Guo, Jingya</creatorcontrib><creatorcontrib>Zhang, Jiangwei</creatorcontrib><creatorcontrib>Dong, Haopeng</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Shi, Yantao</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xin, Cuncun</au><au>Shang, Wenzhe</au><au>Hu, Jinwen</au><au>Zhu, Chao</au><au>Guo, Jingya</au><au>Zhang, Jiangwei</au><au>Dong, Haopeng</au><au>Liu, Wei</au><au>Shi, Yantao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of Morphology and Electronic Structure Modulation on Atomic Iron‐Nitrogen‐Carbon Catalysts for Highly Efficient Oxygen Reduction</atitle><jtitle>Advanced functional materials</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>32</volume><issue>2</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Atomic transition‐metal‐nitrogen‐carbon catalysts (M‐N‐Cs) hold great promise as Pt‐group‐metal‐free candidates for electrochemical reactions, yet their rational design and controllable synthesis remain fundamental challenges. Here, the molten‐salts mediated pyrolysis is demonstrated to be an effective and facile strategy for simultaneous morphology and electronic structure modulation of prototypical Fe‐N‐C materials, which functions as efficient oxygen reduction electrocatalysts. Taking advantage of the strong polarity and salt templating effects, the as‐obtained Fe‐N/C‐single atom catalyst (SAC) possesses hierarchical porous nanosheet morphology with an impressive specific surface area of 2237 m2 g−1 and unique FeN4Cl moieties as isolated active centers. The Fe‐N/C‐SAC delivers remarkable alkaline oxygen reduction reaction (ORR) activity with a half‐wave potential of 0.91 V and record kinetic current density up to 55 mA cm−2, outperforming the benchmark Pt/C. By virtue of dechlorination treatment, it is experimentally identified that the enhanced ORR activities are essentially governed by the axially bound Cl. Theoretical calculations rationalize this finding and demonstrate that the well‐defined fivefold‐coordinated configuration accelerates 4e− pathway kinetics through near‐optimal adsorption of the *OH intermediates and tunes the potential determining step from *OH reduction to *OOH formation. This study provides fundamental insights into the coordination‐engineered strategy in single‐atom catalysis. Atomic‐site halogenation and hierarchical porosity engineering on M‐N‐Cs catalysts are achieved through a controllable molten‐salts mediated pyrolysis method to boost the sluggish oxygen reduction kinetics. Fe‐N/C‐single atom catalyst demonstrates a remarkable alkaline oxygen reduction reaction activity with a half‐wave potential of 0.91 V and record kinetic current density up to 55 mA cm−2, outperforming the benchmark Pt/C.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202108345</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7318-2963</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2022-01, Vol.32 (2), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2618856423
source Wiley-Blackwell Read & Publish Collection
subjects Atomic structure
Carbon
Catalysis
Chemical reactions
Dechlorination
Electrocatalysts
Electronic structure
halogen coordination
Iron
Materials science
Mathematical analysis
Modulation
molten‐salts strategy
Morphology
Nitrogen
oxygen reduction reaction
Oxygen reduction reactions
Pyrolysis
Single atom catalysts
X‐ray absorption spectroscopy
title Integration of Morphology and Electronic Structure Modulation on Atomic Iron‐Nitrogen‐Carbon Catalysts for Highly Efficient Oxygen Reduction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A55%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20Morphology%20and%20Electronic%20Structure%20Modulation%20on%20Atomic%20Iron%E2%80%90Nitrogen%E2%80%90Carbon%20Catalysts%20for%20Highly%20Efficient%20Oxygen%20Reduction&rft.jtitle=Advanced%20functional%20materials&rft.au=Xin,%20Cuncun&rft.date=2022-01-01&rft.volume=32&rft.issue=2&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202108345&rft_dat=%3Cproquest_cross%3E2618856423%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3835-e59ce92820d9bd0bef66ca4765129bec280bc0e0306da3bbe7d5bebbc1a99ee63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2618856423&rft_id=info:pmid/&rfr_iscdi=true