Loading…
Integration of Morphology and Electronic Structure Modulation on Atomic Iron‐Nitrogen‐Carbon Catalysts for Highly Efficient Oxygen Reduction
Atomic transition‐metal‐nitrogen‐carbon catalysts (M‐N‐Cs) hold great promise as Pt‐group‐metal‐free candidates for electrochemical reactions, yet their rational design and controllable synthesis remain fundamental challenges. Here, the molten‐salts mediated pyrolysis is demonstrated to be an effect...
Saved in:
Published in: | Advanced functional materials 2022-01, Vol.32 (2), p.n/a |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3835-e59ce92820d9bd0bef66ca4765129bec280bc0e0306da3bbe7d5bebbc1a99ee63 |
---|---|
cites | cdi_FETCH-LOGICAL-c3835-e59ce92820d9bd0bef66ca4765129bec280bc0e0306da3bbe7d5bebbc1a99ee63 |
container_end_page | n/a |
container_issue | 2 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 32 |
creator | Xin, Cuncun Shang, Wenzhe Hu, Jinwen Zhu, Chao Guo, Jingya Zhang, Jiangwei Dong, Haopeng Liu, Wei Shi, Yantao |
description | Atomic transition‐metal‐nitrogen‐carbon catalysts (M‐N‐Cs) hold great promise as Pt‐group‐metal‐free candidates for electrochemical reactions, yet their rational design and controllable synthesis remain fundamental challenges. Here, the molten‐salts mediated pyrolysis is demonstrated to be an effective and facile strategy for simultaneous morphology and electronic structure modulation of prototypical Fe‐N‐C materials, which functions as efficient oxygen reduction electrocatalysts. Taking advantage of the strong polarity and salt templating effects, the as‐obtained Fe‐N/C‐single atom catalyst (SAC) possesses hierarchical porous nanosheet morphology with an impressive specific surface area of 2237 m2 g−1 and unique FeN4Cl moieties as isolated active centers. The Fe‐N/C‐SAC delivers remarkable alkaline oxygen reduction reaction (ORR) activity with a half‐wave potential of 0.91 V and record kinetic current density up to 55 mA cm−2, outperforming the benchmark Pt/C. By virtue of dechlorination treatment, it is experimentally identified that the enhanced ORR activities are essentially governed by the axially bound Cl. Theoretical calculations rationalize this finding and demonstrate that the well‐defined fivefold‐coordinated configuration accelerates 4e− pathway kinetics through near‐optimal adsorption of the *OH intermediates and tunes the potential determining step from *OH reduction to *OOH formation. This study provides fundamental insights into the coordination‐engineered strategy in single‐atom catalysis.
Atomic‐site halogenation and hierarchical porosity engineering on M‐N‐Cs catalysts are achieved through a controllable molten‐salts mediated pyrolysis method to boost the sluggish oxygen reduction kinetics. Fe‐N/C‐single atom catalyst demonstrates a remarkable alkaline oxygen reduction reaction activity with a half‐wave potential of 0.91 V and record kinetic current density up to 55 mA cm−2, outperforming the benchmark Pt/C. |
doi_str_mv | 10.1002/adfm.202108345 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2618856423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618856423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3835-e59ce92820d9bd0bef66ca4765129bec280bc0e0306da3bbe7d5bebbc1a99ee63</originalsourceid><addsrcrecordid>eNqFkM1Kw0AUhYMoWKtb1wOuW-cnmSTLEltbaC34A-7CzOQmTUkzdTJBs_MR-ow-iVNa6tLVPXC-cy4cz7sleEgwpvciyzdDiinBEfODM69HOOEDhml0ftLk_dK7apo1xiQMmd_zdrPaQmGELXWNdI4W2mxXutJFh0SdoXEFyhpdlwq9WNMq2xpwTNZWx0SNRlZvnD1z1M_37ql0eAF7mQgjnZ8IK6qusQ3KtUHTslhVHRrnealKqC1afnUOR8-QuXZXee1d5KJq4OZ4-97bZPyaTAfz5eMsGc0HikUsGEAQK4hpRHEWywxLyDlXwg95QGgsQdEIS4UBM8wzwaSEMAskSKmIiGMAzvre3aF3a_RHC41N17o1tXuZUk6iKOA-ZY4aHihldNMYyNOtKTfCdCnB6X71dL96elrdBeJD4LOsoPuHTkcPk8Vf9hday4xh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618856423</pqid></control><display><type>article</type><title>Integration of Morphology and Electronic Structure Modulation on Atomic Iron‐Nitrogen‐Carbon Catalysts for Highly Efficient Oxygen Reduction</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Xin, Cuncun ; Shang, Wenzhe ; Hu, Jinwen ; Zhu, Chao ; Guo, Jingya ; Zhang, Jiangwei ; Dong, Haopeng ; Liu, Wei ; Shi, Yantao</creator><creatorcontrib>Xin, Cuncun ; Shang, Wenzhe ; Hu, Jinwen ; Zhu, Chao ; Guo, Jingya ; Zhang, Jiangwei ; Dong, Haopeng ; Liu, Wei ; Shi, Yantao</creatorcontrib><description>Atomic transition‐metal‐nitrogen‐carbon catalysts (M‐N‐Cs) hold great promise as Pt‐group‐metal‐free candidates for electrochemical reactions, yet their rational design and controllable synthesis remain fundamental challenges. Here, the molten‐salts mediated pyrolysis is demonstrated to be an effective and facile strategy for simultaneous morphology and electronic structure modulation of prototypical Fe‐N‐C materials, which functions as efficient oxygen reduction electrocatalysts. Taking advantage of the strong polarity and salt templating effects, the as‐obtained Fe‐N/C‐single atom catalyst (SAC) possesses hierarchical porous nanosheet morphology with an impressive specific surface area of 2237 m2 g−1 and unique FeN4Cl moieties as isolated active centers. The Fe‐N/C‐SAC delivers remarkable alkaline oxygen reduction reaction (ORR) activity with a half‐wave potential of 0.91 V and record kinetic current density up to 55 mA cm−2, outperforming the benchmark Pt/C. By virtue of dechlorination treatment, it is experimentally identified that the enhanced ORR activities are essentially governed by the axially bound Cl. Theoretical calculations rationalize this finding and demonstrate that the well‐defined fivefold‐coordinated configuration accelerates 4e− pathway kinetics through near‐optimal adsorption of the *OH intermediates and tunes the potential determining step from *OH reduction to *OOH formation. This study provides fundamental insights into the coordination‐engineered strategy in single‐atom catalysis.
Atomic‐site halogenation and hierarchical porosity engineering on M‐N‐Cs catalysts are achieved through a controllable molten‐salts mediated pyrolysis method to boost the sluggish oxygen reduction kinetics. Fe‐N/C‐single atom catalyst demonstrates a remarkable alkaline oxygen reduction reaction activity with a half‐wave potential of 0.91 V and record kinetic current density up to 55 mA cm−2, outperforming the benchmark Pt/C.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202108345</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Atomic structure ; Carbon ; Catalysis ; Chemical reactions ; Dechlorination ; Electrocatalysts ; Electronic structure ; halogen coordination ; Iron ; Materials science ; Mathematical analysis ; Modulation ; molten‐salts strategy ; Morphology ; Nitrogen ; oxygen reduction reaction ; Oxygen reduction reactions ; Pyrolysis ; Single atom catalysts ; X‐ray absorption spectroscopy</subject><ispartof>Advanced functional materials, 2022-01, Vol.32 (2), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3835-e59ce92820d9bd0bef66ca4765129bec280bc0e0306da3bbe7d5bebbc1a99ee63</citedby><cites>FETCH-LOGICAL-c3835-e59ce92820d9bd0bef66ca4765129bec280bc0e0306da3bbe7d5bebbc1a99ee63</cites><orcidid>0000-0002-7318-2963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Xin, Cuncun</creatorcontrib><creatorcontrib>Shang, Wenzhe</creatorcontrib><creatorcontrib>Hu, Jinwen</creatorcontrib><creatorcontrib>Zhu, Chao</creatorcontrib><creatorcontrib>Guo, Jingya</creatorcontrib><creatorcontrib>Zhang, Jiangwei</creatorcontrib><creatorcontrib>Dong, Haopeng</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Shi, Yantao</creatorcontrib><title>Integration of Morphology and Electronic Structure Modulation on Atomic Iron‐Nitrogen‐Carbon Catalysts for Highly Efficient Oxygen Reduction</title><title>Advanced functional materials</title><description>Atomic transition‐metal‐nitrogen‐carbon catalysts (M‐N‐Cs) hold great promise as Pt‐group‐metal‐free candidates for electrochemical reactions, yet their rational design and controllable synthesis remain fundamental challenges. Here, the molten‐salts mediated pyrolysis is demonstrated to be an effective and facile strategy for simultaneous morphology and electronic structure modulation of prototypical Fe‐N‐C materials, which functions as efficient oxygen reduction electrocatalysts. Taking advantage of the strong polarity and salt templating effects, the as‐obtained Fe‐N/C‐single atom catalyst (SAC) possesses hierarchical porous nanosheet morphology with an impressive specific surface area of 2237 m2 g−1 and unique FeN4Cl moieties as isolated active centers. The Fe‐N/C‐SAC delivers remarkable alkaline oxygen reduction reaction (ORR) activity with a half‐wave potential of 0.91 V and record kinetic current density up to 55 mA cm−2, outperforming the benchmark Pt/C. By virtue of dechlorination treatment, it is experimentally identified that the enhanced ORR activities are essentially governed by the axially bound Cl. Theoretical calculations rationalize this finding and demonstrate that the well‐defined fivefold‐coordinated configuration accelerates 4e− pathway kinetics through near‐optimal adsorption of the *OH intermediates and tunes the potential determining step from *OH reduction to *OOH formation. This study provides fundamental insights into the coordination‐engineered strategy in single‐atom catalysis.
Atomic‐site halogenation and hierarchical porosity engineering on M‐N‐Cs catalysts are achieved through a controllable molten‐salts mediated pyrolysis method to boost the sluggish oxygen reduction kinetics. Fe‐N/C‐single atom catalyst demonstrates a remarkable alkaline oxygen reduction reaction activity with a half‐wave potential of 0.91 V and record kinetic current density up to 55 mA cm−2, outperforming the benchmark Pt/C.</description><subject>Atomic structure</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>Chemical reactions</subject><subject>Dechlorination</subject><subject>Electrocatalysts</subject><subject>Electronic structure</subject><subject>halogen coordination</subject><subject>Iron</subject><subject>Materials science</subject><subject>Mathematical analysis</subject><subject>Modulation</subject><subject>molten‐salts strategy</subject><subject>Morphology</subject><subject>Nitrogen</subject><subject>oxygen reduction reaction</subject><subject>Oxygen reduction reactions</subject><subject>Pyrolysis</subject><subject>Single atom catalysts</subject><subject>X‐ray absorption spectroscopy</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Kw0AUhYMoWKtb1wOuW-cnmSTLEltbaC34A-7CzOQmTUkzdTJBs_MR-ow-iVNa6tLVPXC-cy4cz7sleEgwpvciyzdDiinBEfODM69HOOEDhml0ftLk_dK7apo1xiQMmd_zdrPaQmGELXWNdI4W2mxXutJFh0SdoXEFyhpdlwq9WNMq2xpwTNZWx0SNRlZvnD1z1M_37ql0eAF7mQgjnZ8IK6qusQ3KtUHTslhVHRrnealKqC1afnUOR8-QuXZXee1d5KJq4OZ4-97bZPyaTAfz5eMsGc0HikUsGEAQK4hpRHEWywxLyDlXwg95QGgsQdEIS4UBM8wzwaSEMAskSKmIiGMAzvre3aF3a_RHC41N17o1tXuZUk6iKOA-ZY4aHihldNMYyNOtKTfCdCnB6X71dL96elrdBeJD4LOsoPuHTkcPk8Vf9hday4xh</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Xin, Cuncun</creator><creator>Shang, Wenzhe</creator><creator>Hu, Jinwen</creator><creator>Zhu, Chao</creator><creator>Guo, Jingya</creator><creator>Zhang, Jiangwei</creator><creator>Dong, Haopeng</creator><creator>Liu, Wei</creator><creator>Shi, Yantao</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7318-2963</orcidid></search><sort><creationdate>20220101</creationdate><title>Integration of Morphology and Electronic Structure Modulation on Atomic Iron‐Nitrogen‐Carbon Catalysts for Highly Efficient Oxygen Reduction</title><author>Xin, Cuncun ; Shang, Wenzhe ; Hu, Jinwen ; Zhu, Chao ; Guo, Jingya ; Zhang, Jiangwei ; Dong, Haopeng ; Liu, Wei ; Shi, Yantao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3835-e59ce92820d9bd0bef66ca4765129bec280bc0e0306da3bbe7d5bebbc1a99ee63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic structure</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>Chemical reactions</topic><topic>Dechlorination</topic><topic>Electrocatalysts</topic><topic>Electronic structure</topic><topic>halogen coordination</topic><topic>Iron</topic><topic>Materials science</topic><topic>Mathematical analysis</topic><topic>Modulation</topic><topic>molten‐salts strategy</topic><topic>Morphology</topic><topic>Nitrogen</topic><topic>oxygen reduction reaction</topic><topic>Oxygen reduction reactions</topic><topic>Pyrolysis</topic><topic>Single atom catalysts</topic><topic>X‐ray absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xin, Cuncun</creatorcontrib><creatorcontrib>Shang, Wenzhe</creatorcontrib><creatorcontrib>Hu, Jinwen</creatorcontrib><creatorcontrib>Zhu, Chao</creatorcontrib><creatorcontrib>Guo, Jingya</creatorcontrib><creatorcontrib>Zhang, Jiangwei</creatorcontrib><creatorcontrib>Dong, Haopeng</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Shi, Yantao</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xin, Cuncun</au><au>Shang, Wenzhe</au><au>Hu, Jinwen</au><au>Zhu, Chao</au><au>Guo, Jingya</au><au>Zhang, Jiangwei</au><au>Dong, Haopeng</au><au>Liu, Wei</au><au>Shi, Yantao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of Morphology and Electronic Structure Modulation on Atomic Iron‐Nitrogen‐Carbon Catalysts for Highly Efficient Oxygen Reduction</atitle><jtitle>Advanced functional materials</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>32</volume><issue>2</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Atomic transition‐metal‐nitrogen‐carbon catalysts (M‐N‐Cs) hold great promise as Pt‐group‐metal‐free candidates for electrochemical reactions, yet their rational design and controllable synthesis remain fundamental challenges. Here, the molten‐salts mediated pyrolysis is demonstrated to be an effective and facile strategy for simultaneous morphology and electronic structure modulation of prototypical Fe‐N‐C materials, which functions as efficient oxygen reduction electrocatalysts. Taking advantage of the strong polarity and salt templating effects, the as‐obtained Fe‐N/C‐single atom catalyst (SAC) possesses hierarchical porous nanosheet morphology with an impressive specific surface area of 2237 m2 g−1 and unique FeN4Cl moieties as isolated active centers. The Fe‐N/C‐SAC delivers remarkable alkaline oxygen reduction reaction (ORR) activity with a half‐wave potential of 0.91 V and record kinetic current density up to 55 mA cm−2, outperforming the benchmark Pt/C. By virtue of dechlorination treatment, it is experimentally identified that the enhanced ORR activities are essentially governed by the axially bound Cl. Theoretical calculations rationalize this finding and demonstrate that the well‐defined fivefold‐coordinated configuration accelerates 4e− pathway kinetics through near‐optimal adsorption of the *OH intermediates and tunes the potential determining step from *OH reduction to *OOH formation. This study provides fundamental insights into the coordination‐engineered strategy in single‐atom catalysis.
Atomic‐site halogenation and hierarchical porosity engineering on M‐N‐Cs catalysts are achieved through a controllable molten‐salts mediated pyrolysis method to boost the sluggish oxygen reduction kinetics. Fe‐N/C‐single atom catalyst demonstrates a remarkable alkaline oxygen reduction reaction activity with a half‐wave potential of 0.91 V and record kinetic current density up to 55 mA cm−2, outperforming the benchmark Pt/C.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202108345</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-7318-2963</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2022-01, Vol.32 (2), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2618856423 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Atomic structure Carbon Catalysis Chemical reactions Dechlorination Electrocatalysts Electronic structure halogen coordination Iron Materials science Mathematical analysis Modulation molten‐salts strategy Morphology Nitrogen oxygen reduction reaction Oxygen reduction reactions Pyrolysis Single atom catalysts X‐ray absorption spectroscopy |
title | Integration of Morphology and Electronic Structure Modulation on Atomic Iron‐Nitrogen‐Carbon Catalysts for Highly Efficient Oxygen Reduction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A55%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20Morphology%20and%20Electronic%20Structure%20Modulation%20on%20Atomic%20Iron%E2%80%90Nitrogen%E2%80%90Carbon%20Catalysts%20for%20Highly%20Efficient%20Oxygen%20Reduction&rft.jtitle=Advanced%20functional%20materials&rft.au=Xin,%20Cuncun&rft.date=2022-01-01&rft.volume=32&rft.issue=2&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202108345&rft_dat=%3Cproquest_cross%3E2618856423%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3835-e59ce92820d9bd0bef66ca4765129bec280bc0e0306da3bbe7d5bebbc1a99ee63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2618856423&rft_id=info:pmid/&rfr_iscdi=true |