Loading…
g-Inspector: Recurrent Attention Model on Graph
Graph classification problem is becoming one of research hotspots in the realm of graph mining, which has been widely used in cheminformatics, bioinformatics and social network analytics. Existing approaches, such as graph kernel methods and graph Convolutional Neural Network, are facing the challen...
Saved in:
Published in: | IEEE transactions on knowledge and data engineering 2022-02, Vol.34 (2), p.680-690 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-3a16097931f26a7e90ea790da65f5c88f6b751afa298f55d39d9aee20280c6663 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-3a16097931f26a7e90ea790da65f5c88f6b751afa298f55d39d9aee20280c6663 |
container_end_page | 690 |
container_issue | 2 |
container_start_page | 680 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 34 |
creator | Luo, Zhiling Cui, Yinghua Zhao, Sha Yin, Jianwei |
description | Graph classification problem is becoming one of research hotspots in the realm of graph mining, which has been widely used in cheminformatics, bioinformatics and social network analytics. Existing approaches, such as graph kernel methods and graph Convolutional Neural Network, are facing the challenges of non-interpretability and high dimensionality. To address the problems, we propose a novel recurrent attention model, called g-Inspector, which applies the attention mechanism to investigate the significance of each region to make the results interpretable. It also takes a shift operation to guide the inspector agent to discover the next relevant region, so that the model sequentially loads small regions instead of the entire large graph, to solve the high dimensionality problem. The experiments conducted on standard graph datasets show the effectiveness of our g-Inspector in graph classification problems. |
doi_str_mv | 10.1109/TKDE.2020.2983689 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2619018304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9055157</ieee_id><sourcerecordid>2619018304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-3a16097931f26a7e90ea790da65f5c88f6b751afa298f55d39d9aee20280c6663</originalsourceid><addsrcrecordid>eNo9kEtPwkAUhSdGExH9AcZNE9eFezudlzuCiESMicH1ZGzvKATbOlMW_HuHQFydszjnPj7GbhFGiGDGq5fH2aiAAkaF0Vxqc8YGKITOCzR4njyUmJe8VJfsKsYNAGilccDGX_miiR1VfRsesneqdiFQ02eTvk-ybpvsta1pmyUzD677vmYX3m0j3Zx0yD6eZqvpc758my-mk2VeFYb3OXcowSjD0RfSKTJAThmonRReVFp7-akEOu_StV6ImpvaOKL0gIZKSsmH7P44twvt745ibzftLjRppS0kGkDNoUwpPKaq0MYYyNsurH9c2FsEe-BiD1zsgYs9cUmdu2NnTUT_eQNCoFD8DyxNXHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619018304</pqid></control><display><type>article</type><title>g-Inspector: Recurrent Attention Model on Graph</title><source>IEEE Xplore (Online service)</source><creator>Luo, Zhiling ; Cui, Yinghua ; Zhao, Sha ; Yin, Jianwei</creator><creatorcontrib>Luo, Zhiling ; Cui, Yinghua ; Zhao, Sha ; Yin, Jianwei</creatorcontrib><description>Graph classification problem is becoming one of research hotspots in the realm of graph mining, which has been widely used in cheminformatics, bioinformatics and social network analytics. Existing approaches, such as graph kernel methods and graph Convolutional Neural Network, are facing the challenges of non-interpretability and high dimensionality. To address the problems, we propose a novel recurrent attention model, called g-Inspector, which applies the attention mechanism to investigate the significance of each region to make the results interpretable. It also takes a shift operation to guide the inspector agent to discover the next relevant region, so that the model sequentially loads small regions instead of the entire large graph, to solve the high dimensionality problem. The experiments conducted on standard graph datasets show the effectiveness of our g-Inspector in graph classification problems.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2020.2983689</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Bioinformatics ; Biological system modeling ; Classification ; Computational modeling ; Data models ; Feature extraction ; Graph classification ; graph mining ; Kernel ; recurrent neural network ; reinforcement learning ; Social networking (online) ; Social networks ; Task analysis</subject><ispartof>IEEE transactions on knowledge and data engineering, 2022-02, Vol.34 (2), p.680-690</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-3a16097931f26a7e90ea790da65f5c88f6b751afa298f55d39d9aee20280c6663</citedby><cites>FETCH-LOGICAL-c293t-3a16097931f26a7e90ea790da65f5c88f6b751afa298f55d39d9aee20280c6663</cites><orcidid>0000-0003-4703-7348 ; 0000-0002-2744-4600 ; 0000-0003-4628-5198 ; 0000-0002-0540-7307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9055157$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Luo, Zhiling</creatorcontrib><creatorcontrib>Cui, Yinghua</creatorcontrib><creatorcontrib>Zhao, Sha</creatorcontrib><creatorcontrib>Yin, Jianwei</creatorcontrib><title>g-Inspector: Recurrent Attention Model on Graph</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Graph classification problem is becoming one of research hotspots in the realm of graph mining, which has been widely used in cheminformatics, bioinformatics and social network analytics. Existing approaches, such as graph kernel methods and graph Convolutional Neural Network, are facing the challenges of non-interpretability and high dimensionality. To address the problems, we propose a novel recurrent attention model, called g-Inspector, which applies the attention mechanism to investigate the significance of each region to make the results interpretable. It also takes a shift operation to guide the inspector agent to discover the next relevant region, so that the model sequentially loads small regions instead of the entire large graph, to solve the high dimensionality problem. The experiments conducted on standard graph datasets show the effectiveness of our g-Inspector in graph classification problems.</description><subject>Artificial neural networks</subject><subject>Bioinformatics</subject><subject>Biological system modeling</subject><subject>Classification</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Feature extraction</subject><subject>Graph classification</subject><subject>graph mining</subject><subject>Kernel</subject><subject>recurrent neural network</subject><subject>reinforcement learning</subject><subject>Social networking (online)</subject><subject>Social networks</subject><subject>Task analysis</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwkAUhSdGExH9AcZNE9eFezudlzuCiESMicH1ZGzvKATbOlMW_HuHQFydszjnPj7GbhFGiGDGq5fH2aiAAkaF0Vxqc8YGKITOCzR4njyUmJe8VJfsKsYNAGilccDGX_miiR1VfRsesneqdiFQ02eTvk-ybpvsta1pmyUzD677vmYX3m0j3Zx0yD6eZqvpc758my-mk2VeFYb3OXcowSjD0RfSKTJAThmonRReVFp7-akEOu_StV6ImpvaOKL0gIZKSsmH7P44twvt745ibzftLjRppS0kGkDNoUwpPKaq0MYYyNsurH9c2FsEe-BiD1zsgYs9cUmdu2NnTUT_eQNCoFD8DyxNXHg</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Luo, Zhiling</creator><creator>Cui, Yinghua</creator><creator>Zhao, Sha</creator><creator>Yin, Jianwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4703-7348</orcidid><orcidid>https://orcid.org/0000-0002-2744-4600</orcidid><orcidid>https://orcid.org/0000-0003-4628-5198</orcidid><orcidid>https://orcid.org/0000-0002-0540-7307</orcidid></search><sort><creationdate>20220201</creationdate><title>g-Inspector: Recurrent Attention Model on Graph</title><author>Luo, Zhiling ; Cui, Yinghua ; Zhao, Sha ; Yin, Jianwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-3a16097931f26a7e90ea790da65f5c88f6b751afa298f55d39d9aee20280c6663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Bioinformatics</topic><topic>Biological system modeling</topic><topic>Classification</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Feature extraction</topic><topic>Graph classification</topic><topic>graph mining</topic><topic>Kernel</topic><topic>recurrent neural network</topic><topic>reinforcement learning</topic><topic>Social networking (online)</topic><topic>Social networks</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Zhiling</creatorcontrib><creatorcontrib>Cui, Yinghua</creatorcontrib><creatorcontrib>Zhao, Sha</creatorcontrib><creatorcontrib>Yin, Jianwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Zhiling</au><au>Cui, Yinghua</au><au>Zhao, Sha</au><au>Yin, Jianwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>g-Inspector: Recurrent Attention Model on Graph</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>34</volume><issue>2</issue><spage>680</spage><epage>690</epage><pages>680-690</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Graph classification problem is becoming one of research hotspots in the realm of graph mining, which has been widely used in cheminformatics, bioinformatics and social network analytics. Existing approaches, such as graph kernel methods and graph Convolutional Neural Network, are facing the challenges of non-interpretability and high dimensionality. To address the problems, we propose a novel recurrent attention model, called g-Inspector, which applies the attention mechanism to investigate the significance of each region to make the results interpretable. It also takes a shift operation to guide the inspector agent to discover the next relevant region, so that the model sequentially loads small regions instead of the entire large graph, to solve the high dimensionality problem. The experiments conducted on standard graph datasets show the effectiveness of our g-Inspector in graph classification problems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2020.2983689</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4703-7348</orcidid><orcidid>https://orcid.org/0000-0002-2744-4600</orcidid><orcidid>https://orcid.org/0000-0003-4628-5198</orcidid><orcidid>https://orcid.org/0000-0002-0540-7307</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2022-02, Vol.34 (2), p.680-690 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_proquest_journals_2619018304 |
source | IEEE Xplore (Online service) |
subjects | Artificial neural networks Bioinformatics Biological system modeling Classification Computational modeling Data models Feature extraction Graph classification graph mining Kernel recurrent neural network reinforcement learning Social networking (online) Social networks Task analysis |
title | g-Inspector: Recurrent Attention Model on Graph |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=g-Inspector:%20Recurrent%20Attention%20Model%20on%20Graph&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Luo,%20Zhiling&rft.date=2022-02-01&rft.volume=34&rft.issue=2&rft.spage=680&rft.epage=690&rft.pages=680-690&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2020.2983689&rft_dat=%3Cproquest_cross%3E2619018304%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-3a16097931f26a7e90ea790da65f5c88f6b751afa298f55d39d9aee20280c6663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2619018304&rft_id=info:pmid/&rft_ieee_id=9055157&rfr_iscdi=true |