Loading…

g-Inspector: Recurrent Attention Model on Graph

Graph classification problem is becoming one of research hotspots in the realm of graph mining, which has been widely used in cheminformatics, bioinformatics and social network analytics. Existing approaches, such as graph kernel methods and graph Convolutional Neural Network, are facing the challen...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on knowledge and data engineering 2022-02, Vol.34 (2), p.680-690
Main Authors: Luo, Zhiling, Cui, Yinghua, Zhao, Sha, Yin, Jianwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-3a16097931f26a7e90ea790da65f5c88f6b751afa298f55d39d9aee20280c6663
cites cdi_FETCH-LOGICAL-c293t-3a16097931f26a7e90ea790da65f5c88f6b751afa298f55d39d9aee20280c6663
container_end_page 690
container_issue 2
container_start_page 680
container_title IEEE transactions on knowledge and data engineering
container_volume 34
creator Luo, Zhiling
Cui, Yinghua
Zhao, Sha
Yin, Jianwei
description Graph classification problem is becoming one of research hotspots in the realm of graph mining, which has been widely used in cheminformatics, bioinformatics and social network analytics. Existing approaches, such as graph kernel methods and graph Convolutional Neural Network, are facing the challenges of non-interpretability and high dimensionality. To address the problems, we propose a novel recurrent attention model, called g-Inspector, which applies the attention mechanism to investigate the significance of each region to make the results interpretable. It also takes a shift operation to guide the inspector agent to discover the next relevant region, so that the model sequentially loads small regions instead of the entire large graph, to solve the high dimensionality problem. The experiments conducted on standard graph datasets show the effectiveness of our g-Inspector in graph classification problems.
doi_str_mv 10.1109/TKDE.2020.2983689
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2619018304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9055157</ieee_id><sourcerecordid>2619018304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-3a16097931f26a7e90ea790da65f5c88f6b751afa298f55d39d9aee20280c6663</originalsourceid><addsrcrecordid>eNo9kEtPwkAUhSdGExH9AcZNE9eFezudlzuCiESMicH1ZGzvKATbOlMW_HuHQFydszjnPj7GbhFGiGDGq5fH2aiAAkaF0Vxqc8YGKITOCzR4njyUmJe8VJfsKsYNAGilccDGX_miiR1VfRsesneqdiFQ02eTvk-ybpvsta1pmyUzD677vmYX3m0j3Zx0yD6eZqvpc758my-mk2VeFYb3OXcowSjD0RfSKTJAThmonRReVFp7-akEOu_StV6ImpvaOKL0gIZKSsmH7P44twvt745ibzftLjRppS0kGkDNoUwpPKaq0MYYyNsurH9c2FsEe-BiD1zsgYs9cUmdu2NnTUT_eQNCoFD8DyxNXHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619018304</pqid></control><display><type>article</type><title>g-Inspector: Recurrent Attention Model on Graph</title><source>IEEE Xplore (Online service)</source><creator>Luo, Zhiling ; Cui, Yinghua ; Zhao, Sha ; Yin, Jianwei</creator><creatorcontrib>Luo, Zhiling ; Cui, Yinghua ; Zhao, Sha ; Yin, Jianwei</creatorcontrib><description>Graph classification problem is becoming one of research hotspots in the realm of graph mining, which has been widely used in cheminformatics, bioinformatics and social network analytics. Existing approaches, such as graph kernel methods and graph Convolutional Neural Network, are facing the challenges of non-interpretability and high dimensionality. To address the problems, we propose a novel recurrent attention model, called g-Inspector, which applies the attention mechanism to investigate the significance of each region to make the results interpretable. It also takes a shift operation to guide the inspector agent to discover the next relevant region, so that the model sequentially loads small regions instead of the entire large graph, to solve the high dimensionality problem. The experiments conducted on standard graph datasets show the effectiveness of our g-Inspector in graph classification problems.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2020.2983689</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Bioinformatics ; Biological system modeling ; Classification ; Computational modeling ; Data models ; Feature extraction ; Graph classification ; graph mining ; Kernel ; recurrent neural network ; reinforcement learning ; Social networking (online) ; Social networks ; Task analysis</subject><ispartof>IEEE transactions on knowledge and data engineering, 2022-02, Vol.34 (2), p.680-690</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-3a16097931f26a7e90ea790da65f5c88f6b751afa298f55d39d9aee20280c6663</citedby><cites>FETCH-LOGICAL-c293t-3a16097931f26a7e90ea790da65f5c88f6b751afa298f55d39d9aee20280c6663</cites><orcidid>0000-0003-4703-7348 ; 0000-0002-2744-4600 ; 0000-0003-4628-5198 ; 0000-0002-0540-7307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9055157$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Luo, Zhiling</creatorcontrib><creatorcontrib>Cui, Yinghua</creatorcontrib><creatorcontrib>Zhao, Sha</creatorcontrib><creatorcontrib>Yin, Jianwei</creatorcontrib><title>g-Inspector: Recurrent Attention Model on Graph</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Graph classification problem is becoming one of research hotspots in the realm of graph mining, which has been widely used in cheminformatics, bioinformatics and social network analytics. Existing approaches, such as graph kernel methods and graph Convolutional Neural Network, are facing the challenges of non-interpretability and high dimensionality. To address the problems, we propose a novel recurrent attention model, called g-Inspector, which applies the attention mechanism to investigate the significance of each region to make the results interpretable. It also takes a shift operation to guide the inspector agent to discover the next relevant region, so that the model sequentially loads small regions instead of the entire large graph, to solve the high dimensionality problem. The experiments conducted on standard graph datasets show the effectiveness of our g-Inspector in graph classification problems.</description><subject>Artificial neural networks</subject><subject>Bioinformatics</subject><subject>Biological system modeling</subject><subject>Classification</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Feature extraction</subject><subject>Graph classification</subject><subject>graph mining</subject><subject>Kernel</subject><subject>recurrent neural network</subject><subject>reinforcement learning</subject><subject>Social networking (online)</subject><subject>Social networks</subject><subject>Task analysis</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwkAUhSdGExH9AcZNE9eFezudlzuCiESMicH1ZGzvKATbOlMW_HuHQFydszjnPj7GbhFGiGDGq5fH2aiAAkaF0Vxqc8YGKITOCzR4njyUmJe8VJfsKsYNAGilccDGX_miiR1VfRsesneqdiFQ02eTvk-ybpvsta1pmyUzD677vmYX3m0j3Zx0yD6eZqvpc758my-mk2VeFYb3OXcowSjD0RfSKTJAThmonRReVFp7-akEOu_StV6ImpvaOKL0gIZKSsmH7P44twvt745ibzftLjRppS0kGkDNoUwpPKaq0MYYyNsurH9c2FsEe-BiD1zsgYs9cUmdu2NnTUT_eQNCoFD8DyxNXHg</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Luo, Zhiling</creator><creator>Cui, Yinghua</creator><creator>Zhao, Sha</creator><creator>Yin, Jianwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4703-7348</orcidid><orcidid>https://orcid.org/0000-0002-2744-4600</orcidid><orcidid>https://orcid.org/0000-0003-4628-5198</orcidid><orcidid>https://orcid.org/0000-0002-0540-7307</orcidid></search><sort><creationdate>20220201</creationdate><title>g-Inspector: Recurrent Attention Model on Graph</title><author>Luo, Zhiling ; Cui, Yinghua ; Zhao, Sha ; Yin, Jianwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-3a16097931f26a7e90ea790da65f5c88f6b751afa298f55d39d9aee20280c6663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Bioinformatics</topic><topic>Biological system modeling</topic><topic>Classification</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Feature extraction</topic><topic>Graph classification</topic><topic>graph mining</topic><topic>Kernel</topic><topic>recurrent neural network</topic><topic>reinforcement learning</topic><topic>Social networking (online)</topic><topic>Social networks</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Zhiling</creatorcontrib><creatorcontrib>Cui, Yinghua</creatorcontrib><creatorcontrib>Zhao, Sha</creatorcontrib><creatorcontrib>Yin, Jianwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Zhiling</au><au>Cui, Yinghua</au><au>Zhao, Sha</au><au>Yin, Jianwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>g-Inspector: Recurrent Attention Model on Graph</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>34</volume><issue>2</issue><spage>680</spage><epage>690</epage><pages>680-690</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Graph classification problem is becoming one of research hotspots in the realm of graph mining, which has been widely used in cheminformatics, bioinformatics and social network analytics. Existing approaches, such as graph kernel methods and graph Convolutional Neural Network, are facing the challenges of non-interpretability and high dimensionality. To address the problems, we propose a novel recurrent attention model, called g-Inspector, which applies the attention mechanism to investigate the significance of each region to make the results interpretable. It also takes a shift operation to guide the inspector agent to discover the next relevant region, so that the model sequentially loads small regions instead of the entire large graph, to solve the high dimensionality problem. The experiments conducted on standard graph datasets show the effectiveness of our g-Inspector in graph classification problems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2020.2983689</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4703-7348</orcidid><orcidid>https://orcid.org/0000-0002-2744-4600</orcidid><orcidid>https://orcid.org/0000-0003-4628-5198</orcidid><orcidid>https://orcid.org/0000-0002-0540-7307</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2022-02, Vol.34 (2), p.680-690
issn 1041-4347
1558-2191
language eng
recordid cdi_proquest_journals_2619018304
source IEEE Xplore (Online service)
subjects Artificial neural networks
Bioinformatics
Biological system modeling
Classification
Computational modeling
Data models
Feature extraction
Graph classification
graph mining
Kernel
recurrent neural network
reinforcement learning
Social networking (online)
Social networks
Task analysis
title g-Inspector: Recurrent Attention Model on Graph
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A23%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=g-Inspector:%20Recurrent%20Attention%20Model%20on%20Graph&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Luo,%20Zhiling&rft.date=2022-02-01&rft.volume=34&rft.issue=2&rft.spage=680&rft.epage=690&rft.pages=680-690&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2020.2983689&rft_dat=%3Cproquest_cross%3E2619018304%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-3a16097931f26a7e90ea790da65f5c88f6b751afa298f55d39d9aee20280c6663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2619018304&rft_id=info:pmid/&rft_ieee_id=9055157&rfr_iscdi=true