Loading…

Towards separator-free structural composite supercapacitors

Structural supercapacitors can both carry load and store electrical energy. An approach to build such devices is to modify carbon fibre surfaces to increase their specific surface area and to embed them into a structural electrolyte. We present a way to coat carbon fibres with graphene nanoplatelets...

Full description

Saved in:
Bibliographic Details
Published in:Composites science and technology 2022-01, Vol.217, p.109126, Article 109126
Main Authors: Hubert, Olivier, Todorovic, Nikola, Bismarck, Alexander
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Structural supercapacitors can both carry load and store electrical energy. An approach to build such devices is to modify carbon fibre surfaces to increase their specific surface area and to embed them into a structural electrolyte. We present a way to coat carbon fibres with graphene nanoplatelets by electrophoretic deposition in water. The effect of time and voltage on the mechanical properties of the carbon fibres, the structure of the coating and the specific surface area of the coated carbon fibres are discussed. A specific capacity of 1.44 F/g was reached, which is 130% higher than state-of-the-art structural electrodes. We demonstrate the scalability of the deposition process to continuous production of coated carbon fibres. These carbon fibre electrodes were used to realise large (21 cm long) structural supercapacitor demonstrators without the need for a separator, having a specific capacity of 623 mF/g. [Display omitted]
ISSN:0266-3538
1879-1050
DOI:10.1016/j.compscitech.2021.109126